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Abstract 

Accurate measurements of vertical forest structure at a global scale are critically important 

to advance our knowledge of terrestrial ecology and biodiversity. NASA’s Global 

Ecosystem Dynamics Investigation (GEDI) mission aims to fill current observation gaps 

by collecting the first high-resolution lidar observations of the 3D structure of the Earth 

and providing spatially dense samplings of forest structure between ~52° N and ~52° S. 

The GEDI instrument consists of 3 lasers producing a total of 8 beam ground transects that 

are spaced approximately 600 m apart on the Earth’s surface in the cross-track direction. 

Each beam transect consists of ~25 m footprint samples approximately spaced every 60 m 

along track. The fundamental footprint observations made by the GEDI instrument are 

received waveforms of energy as a function of receive time. These are combined with laser 

pointing and positioning information for precise geolocation and post-processed to 

determine ranging points of reflecting surfaces with the waveform footprint. The 

waveforms provided in the L1B product and locations of reflecting surfaces within the 

footprint provided in the L2A product are then used to derive the directional gap probability 

profile and extract biophysical metrics from each GEDI waveform. These metrics include 

canopy cover, Plant Area Index (PAI), Plant Area Volume Density (PAVD) and Foliage 

Height Diversity (FHD). This ATBD presents the algorithm and approach used to 

determine these biophysical metrics within the GEDI waveforms. 
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1.0 INTRODUCTION 

1.1 GEDI Mission Overview 

The Global Ecosystem Dynamics Investigation (GEDI) responds directly to 
observational priorities set by the National Academy of Sciences and NASA’s Science 
Mission Directorate, which emphasizes the need for lidar vertical structure 
measurements to address key challenges in carbon cycling and biodiversity. The 
mission aims to answer three fundamental forest ecosystem science questions: 

1. What is the carbon balance of the Earth’s forests? 
2. How will the land surface mitigate atmospheric CO2 concentrations in the 

future? 
3. How does forest structure affect habitat quality and biodiversity? 

To address these science questions, the mission has identified four primary 
objectives: 

1. Quantify the distribution of aboveground carbon stored in vegetation 
2. Quantify the effects of vegetation disturbance and recovery on carbon storage 
3. Quantify the potential for existing and new or regrowing forests to sequester 

carbon in the future 
4. Quantify the spatial and temporal distribution of habitat structure and its 

influence on habitat quality and biodiversity 
GEDI aims to fill current observation gaps by collecting the first high-resolution lidar 
observations of the 3D structure of the Earth with a geodetic-class, full-waveform 
light detection and ranging (lidar) laser system. It will provide spatially dense 
samplings of forest structure between ~52° N and ~52° S and is expected to produce 
about 10 billion cloud-free observations during its nominal 24-month mission length. 
 

1.2 GEDI Data Products Overview 

The GEDI data products are noted in Table 1.  The GEDI Level 1 data products are 

developed in two separate products, a Level 1A (L1A) and a Level 1B (L1B) product.  The 

GEDI L1A data product contains fundamental instrument engineering and housekeeping 

data as well as the raw waveform and geolocation information used to compute higher level 

data products. The GEDI L1B geolocated waveform data product, while similar to the L1A 

data product, contains specific data to support the computation of the higher level 2A and 

2B data products.  These L1B data include the corrected receive waveform, as well as the 

receive waveform geolocation information.  The L1B data products provide end users with 

context for the higher L2 products as well as the ability for end users to apply their own 

waveform interpretation algorithms. The L2 products contain information derived from the 

geolocated GEDI return waveforms, including ground elevation, height and structure 

metrics and other waveform-derived metrics describing the imaged surface. 

 

 

Table 1.  GEDI data products 



 

 

 

 

Product Description Data Latency Archive Site 

Level 1B Geolocated Waveforms 
4 months in monthly 
intervals 

LPDAAC 

Level 2A Elevation and Height Metrics 
4 months in monthly 
intervals 

LPDAAC 

Level 2B 
Canopy Cover and Vertical 
Profile Metrics 

4 months in monthly 
intervals 

LPDAAC 

Level 3 Gridded Land Surface Metrics 
4 months in monthly 
intervals 

ORNLDAAC 

Level 4A 
Footprint Aboveground 
Biomass 

6 months after global 
sampling required to 
meet L1 requirement 

ORNLDAAC 

Level 4B 
Gridded Aboveground 
Biomass 

6 months after global 
sampling required to 
meet L1 requirement 

ORNLDAAC 

Level 4 
Demonstrative 

• Ecosystem model outputs 
• Enhanced height/biomass 

by fusion with TanDEM-X 
& Landsat 

• Habitat model outputs 

- - 

 

1.3 GEDI Configuration 

The GEDI instrument is a geodetic-class, full-waveform light detection and ranging 

(lidar) laser system comprised of 3 lasers producing a total of 8 beam ground tracks that 

are spaced approximately 600 m apart on the Earth’s surface in the cross-track direction 

relative to the flight direction, and approximately 735 m of zonal (parallel to lines of 

latitude) spacing. Each beam transect consists of ~25 m footprint samples approximately 

spaced every 60 m along track.  The “coverage” laser is split into two transects that are 

then each dithered producing four ground transects.   The other two lasers are dithered only, 

producing two ground transects each. The configuration of the ground tracks is shown in 

Figure 1. A GPS system provides knowledge of where the GEDI instrument is in its orbit 

relative to the surface of the Earth, while star trackers give the orientation of the instrument. 

The ranging points from each footprint’s waveform are geolocated to produce geolocation 

data groups (“geolocation” and “geophys_corr”) provided in the L1 and L2 data products. 

 



 

 

 

 

 

Figure 1.  GEDI beam ground-track configuration 

 

1.4 Document Overview and Objectives 

This algorithm theoretical basis document (ATBD) for GEDI Level 2B footprint 
canopy cover and vertical profile metrics is designed to provide both: (1) a general 
theoretical overview of the algorithms, processing steps and procedures required to 
provide measurements of canopy profile metrics and (2) a detailed algorithm 
implementation and processing flow specifically designed for the GEDI mission level 
2B products.  

This topic is arranged in the following manner: 
• Section 1 presents a brief introduction and related documentation 
• Section 2 presents an overview of deriving GEDI vegetation profile metrics 
• Section 3 presents details of the retrieval algorithm for GEDI L2B products 
• Section 4 contains references  
• An acronym glossary can be found at the end of this document 

1.5 Historical Background 

Vegetation structure, defined as the aboveground spatial arrangement of individual plant 

crowns, is closely linked to forest ecological functions and services. In the ecological 

literature, several key metrics describe three-dimensional distribution and complexity of 

the vegetation structure. Of particular importance are total canopy cover and its vertical 

profile, leaf area index (LAI) or plant area index (PAI) and its vertical profile, as well as 



 

 

 

 

foliage height diversity (FHD). Accurate estimates of these variables are of critical 

importance in studies of global environmental change and terrestrial biodiversity. 

Tremendous efforts from the remote sensing community have resulted in vegetation 

structure products at different spatial and temporal resolutions (e.g. ~10 m to 10 km, daily 

to annually) since the 1980s, primarily using data collected from passive optical remote 

sensing platforms. To date there have been a large number of regional to global scale 

canopy cover and LAI data sets available, including MODIS (Myneni et al. 2002; Defries 

et al. 2000), Landsat (Ganguly et al. 2008; Hansen et al. 2013; Sexton et al. 2013) and 

many others (Weiss et al. 2007). These products have been widely used in studies of 

terrestrial ecosystems and have greatly improved our knowledge and understanding of 

global environment and biodiversity change (Mu et al. 2007; Zhao et al. 2005; Myneni et 

al. 2007; Hansen et al. 2013; Busch et al. 2015; Harris et al. 2012; Goetz et al. 2015; Pimm 

et al. 2014; Rose et al. 2015). However, three key issues remain unresolved: first, spectral 

signals of satellite images saturate over densely forested areas (Myneni et al. 2002; Wenze 

Yang et al. 2006); second, products derived from different sensors (or even from the same 

sensor) are inconsistent (Abuelgasim et al. 2006; Garrigues et al. 2008; Morisette et al. 

2006; Fang et al. 2012; Sexton et al. 2016); and finally, measurements of vertical canopy 

structure are largely unavailable. 

 

Lidar remote sensing offers a potential solution to these problems by providing precise 

measurements of three-dimensional forest structure (Lefsky et al. 2002; Dubayah & Drake 

2000; Harding 2001). Both plot-level and landscape-scale products of canopy cover, LAI 

and their profiles have been derived from terrestrial laser scanning and airborne discrete 

return or waveform lidar (Armston et al. 2013; Calders et al. 2014; Tang et al. 2012; Tang, 

Brolly, et al. 2014; Hancock et al. 2014; Yang et al. 2013; F. Zhao et al. 2011; Hancock et 

al. 2011; Hancock et al. 2012; Parker et al. 2001; Falkowski et al. 2008; Wulder et al. 

2007). These products cover all major biomes including dense tropical rainforests, and 

achieve high agreements with radiation-interception based techniques (e.g. LAI-2000 and 

hemispherical photons) and destructively sampled data. Attempts have also been made to 

generate similar data sets but over much broader geographical areas using data from 

spaceborne waveform lidar systems, such as ICESat (Tang, Dubayah, et al. 2014; Tang et 

al. 2016; Harding 2005; Garcia et al. 2012; Luo et al. 2013; Lee et al. 2011). However, 

further ecological applications of ICESat-derived products are still subject to limited data 

coverage and they are not optimized for forest-related studies. This is because ICESat is 

primarily designed to monitor ice dynamics in polar regions, resulting in sparsely 

distributed footprints over major forests at mid-low latitude (Abshire et al. 2005). The large 

footprint size of ICESat (~70 m in diameter) can introduce substantial measurement 

uncertainty of canopy structure, particularly over steep slopes (Duncanson et al. 2010; Pang 

et al. 2011). Yet no other canopy profile product exists globally. 

 

Several lidar satellite missions have been proposed before GEDI, aiming to obtain reliable 

measurements of canopy profile metrics globally. These include the Vegetation Canopy 

Lidar (VCL) mission (Dubayah et al. 1997) and the Deformation, Ecosystem Structure, 

and Dynamics of Ice (DESDynI) mission (Dubayah et al. 2008). However, these missions 

did not get launched because of several issues in either immature technique or financial 

budget sequestration (F. Hall et al. 2011; Goetz 2011). Heritages from these missions 



 

 

 

 

suggest that a waveform lidar system with ~25 m horizontal resolution and ~1 m vertical 

accuracy, is desired for accurately measuring vertical canopy structure (± 10%) in presence 

of moderate slopes (F. G. Hall et al. 2011). These requirements fit well into current design 

of GEDI for estimating canopy cover, LAI and FHD.  

 

1.6 Algorithm Objectives 

The algorithm specified in this document is designed to derive footprint level canopy cover 

and vertical profile over vegetated areas between ~52°N and ~52°S. The data product 

includes estimates of total canopy cover and PAI, vertical profiles of canopy cover and 

PAI, the vertical profile of Plant Area Volume Density and foliage height diversity. The 

GEDI Level 2A and 2B products will provide unprecedented dense spatial samplings of 

forest structure globally. 

1.7 Cover and Vertical Profile Metrics 

Canopy cover is a biophysical parameter widely used in terrestrial remote sensing to 

describe the spatially aggregated geometric properties of vegetation. Multiple definitions 

of canopy cover exist, depending on the applied measuring techniques (Fiala et al. 2006; 

Hansen et al. 2002; Hansen et al. 2003; Jennings et al. 1999; Korhonen et al. 2011; 

Rautiainen et al. 2005). The central issues in the definition are (1) whether the measurement 

is acquired at a specific viewing angle (mostly near-nadir) or over the entire hemisphere; 

and (2) whether a tree crown is treated as an opaque object including all small within-

canopy gaps. In contrast to traditional passive optical sensors, lidar systems measure the 

forest mostly at a small zenith-viewing angle. An off-nadir angle of discrete return airborne 

lidar is typically < 15° and it is < 6° for GEDI to avoid inaccurate range measurements. 

While airborne lidar can help delineate individual tree crown with high spatial resolution 

and footprint density (i.e. counting small openings as part of tree cover), large footprint 

waveform lidar systems like GEDI can only provide estimates of canopy fractional cover 

over the laser-illuminated area. Thus, the GEDI derived canopy cover is the percent of the 

ground covered by the vertical projection of canopy material (i.e. leaves, branches and 

stems only). It is different from two other widely used cover types: canopy closure defined 

as "the proportion of the vegetation over a segment of the sky hemisphere at one point on 

the ground”, or crown cover as "the percentage of the ground covered by a vertical 

projection of the outermost perimeter of the natural spread of the foliage of 

plants"(Jennings et al. 1999). The canopy cover profile is the horizontally-intercepted 
canopy elements at a given height, and is calculated as one minus gap distribution at that 

height level. 

 



 

 

 

 

 

Figure 2. Three types of canopy cover: canopy closure (A), crown cover (B), and canopy fractional cover 

(C). GEDI will only produce canopy fractional cover. 

 

LAI is defined as one half of the total leaf area per unit ground surface (Chen & Black 

1992; Chen et al. 1997; Gower & Norman 1991) and is closely linked to canopy cover 

through the gap distribution within canopy. It is typically utilized in the majority of 

ecological, hydrological and climate models to describe interactions between the biosphere 

and atmosphere (Myneni et al. 2002; Weiss et al. 2007). A closely related concept is plant 

area index (PAI) that incorporates all canopy structural elements (e.g. branch and trunk) in 

addition to leaves, and their numeric difference is usually small in dense broadleaf forests 

(e.g. LAI ≈ 93% PAI) (Tang et al. 2012). In this ATBD, we do not explicitly differentiate 

these two and use them equivalently hereafter for simplicity. Vertical LAI profile is the 

vertical variation of LAI closely related to foliage-height profiles (Aber 1979; Parker et al. 

1989). It is a more realistic representation of three-dimensional canopy structure that can 

be used to quantify flows of energy and material in ecosystems (Vose et al. 1995; Ellsworth 

& Reich 1993; Parker et al. 2005; Stark et al. 2012). It can also be used to describe growth 

pattern of forests at different succession stages (Parker 2004). Different lidar systems, 

including terrestrial, airborne and spaceborne sensors, have demonstrated their capacity in 

deriving highly accurate LAI and profile products even in extremely dense forests 

(Armston et al. 2013; Tang et al. 2012; Hancock et al. 2014; Strahler et al. 2008; Zhao et 

al. 2012; Tang, Brolly, et al. 2014; F. Zhao et al. 2011; K. Zhao et al. 2011; Morsdorf et al. 

2006). However, large-footprint lidar systems cannot directly measure leaf clumping 

conditions or leaf angle distributions. Ancillary information (e.g. clumping index from 

multi-angle observations) is required to convert lidar-perceived effective LAI into true LAI 

(Chen & Black 1992; Chen et al. 2005; Pisek et al. 2015). Yet there is no such database 

available globally at GEDI’s footprint scale (~25 m). In consideration of the 

aforementioned limitations, GEDI only aims to derive PAI and its vertical profile as a more 

direct and accurate product. The users are recommended applying conversions based on 

their best knowledge to convert GEDI’s PAI to LAI for running earth system models 

(Myneni et al. 2002; Weiss et al. 2007).  

 

FHD measures the complexity of canopy structure. It is also known as Shannon's diversity 

index, the Shannon-Wiener index, or the Shannon entropy in the ecological literature, and 

it was originally proposed to quantify the entropy (uncertainty or information level) in 

information theory (MacArthur & Horn 1969). A high FHD value in forest ecology often 

results from more complex forests structure (e.g. caused by multiple canopy layers) (James 



 

 

 

 

& Wamer 1982; Bergen et al. 2009). This complexity is a good indicator of habitat quality 

for wild life, as suggested by pioneering studies of MacArthur & Horn (1961). In particular, 

biodiversity patterns of birds are widely studied in the context of vegetation structure 

(Clawges et al. 2008; Vierling et al. 2008; Huang et al. 2014; Swatantran et al. 2012; Goetz 

et al. 2007; Goetz et al. 2010; Goetz et al. 2014). Similar relationships apply among other 

taxa as well (Aguilar-Amuchastegui & Henebry 2007; Carey & Wilson 2001; Gardner et 

al. 1995). Recent developments of lidar remote sensing have promised an enhanced 

measurement capability of FHD that was previously limited at a few plot samplings due to 

high labor cost. Since FHD measurement is largely based on estimates of vertical LAI 

profile, it can also be directly derived from GEDI. 

 

Figure 3. Examples of LVIS waveforms (blue: raw waveform; red: fitting of ground portion) and associated 

LAI and FHD values in Pongara National Forests, Gabon. Note that FHD is not necessarily correlated with 

LAI, but an independent measurement of vertical canopy structure complexity. 



 

 

 

 

 

1.8 Related Documentation 

Related documents include parent documents and applicable documents, and information 

documents.  

1.8.1 Parent Documents 

• GEDI Science Data Management Plan 

1.8.2 Applicable Documents 

• GEDI ATBD for GEDI Waveform Geolocation for L1 and L2 Products. 

• GEDI ATBD for GEDI Transmit and Receive Waveform Processing for L1 and 

L2 Products 

• GEDI L1A Product Data Dictionary (gedi_l1a_product_data_dictionary.html) 

• GEDI L1B Product Data Dictionary (gedi_l1b_product_data_dictionary.html) 

• GEDI L2A Product Data Dictionary (gedi_l2a_product_data_dictionary.html) 

• GEDI L2B Product Data Dictionary (gedi_l2b_product_data_dictionary.html) 

 

 

 



 

 

 

 

2.0 THEORETICAL BACKGROUND 

This section describes theoretical basis of deriving GEDI canopy profile metrics. It 

includes classical theories in the ecological literature, as well as practical models in lidar 

remote sensing.   

2.1 Canopy Directional Gap Probability and Vertical Profile Metrics 

Measurement of LAI can be based on estimates of canopy directional gap probability, 

which is the complement of canopy cover. This gap theory, following Beer's law, has been 

well established to quantify the relationship between total LAI and gap frequency for 

horizontally homogenous canopy layers (Chen & Cihlar 1995; Chen et al. 1997; Gower & 

Norman 1991; Miller 1967; Nilson 1971; Nilson 1999).  

 
𝑃(𝜃) = 1 − 𝐶𝑜𝑣𝑒𝑟(𝜃) =  𝑒−𝐺(𝜃)∗𝛺(𝜃)∗𝑃𝐴𝐼/𝑐𝑜𝑠 (𝜃)       (1) 

 

where 𝑃(𝜃) is the gap probability within canopy with a view zenith angle of 𝜃, 𝐺(𝜃) is the 

leaf angle projection coefficient representing the fraction of leaf area projected 

perpendicular to the view direction to the total leaf area, and 𝛺(𝜃) is the clumping index 

determined by the spatial distribution pattern of foliage elements. Note this model uses 

Plant Area Index (PAI) rather than LAI, since branches and trunks also reflect laser energy. 

But we do not explicitly consider the difference between the two here as described in 

Section 1.6. We also build the model under the assumption that foliage elements are 

dispersed randomly and independently between layers so that the number of overlaps 

follows the Poisson distribution. 

 

Measurement of vertical canopy structure, including canopy cover and LAI profiles, can 

be related to estimates of vertical canopy directional gap probability in a similar way. Here 

we define Pgap(z, θ) as the probability of a beam of infinitesimal width at zenith angle θ 

to the local normal, being directly transmitted through a canopy. Hence Pgap(z, θ) is 

equivalent to the probability that the ground surface is directly visible from airborne and 

spaceborne remote sensing platforms. We also define Fapp(z) as the apparent foliage 

profile under nadir-viewing angle. It is the surrogate for effective vertical LAI profile and 

describes the horizontally intercepted leaves at height z. Thus, the probability of having no 

leaves above z +Δz, 𝑃(𝑧 + 𝛥𝑧) is the joint probability of P(z) and the probability of having 

no leaves within a thin layer of Δz by satisfying the following equation: 

 
𝑃𝑔𝑎𝑝(𝑧 + 𝛥𝑧, 𝜃) = 𝑃𝑔𝑎𝑝(𝑧, 𝜃) ∗ (1 − 𝐹𝑎𝑝𝑝 (𝑧)  ×  𝛥𝑧 / cos 𝜃)     (2) 

 

By reconstructing the above equation, we can quantify their relationship in Eq. 3 and Eq. 

4 when Δz approaches zero:  

 

𝐹𝑎𝑝𝑝 (𝑧) = lim
Δz→0

−
𝑃𝑔𝑎𝑝(𝑧+𝛥𝑧,𝜃)−𝑃𝑔𝑎𝑝(𝑧,𝜃)

𝑃𝑔𝑎𝑝(𝑧,𝜃)×(𝛥𝑧 / cos 𝜃)
= lim

Δz→0
− 

𝛥𝑃𝑔𝑎𝑝(𝑧,𝜃)

𝑃𝑔𝑎𝑝(𝑧,𝜃)×(𝛥𝑧 / cos 𝜃)
=  

𝑑ln {𝑃𝑔𝑎𝑝(𝑧,𝜃)}

𝑑𝑧/ cos 𝜃
  (3)  

  

𝑃𝐴𝐼(𝑧) =
𝐹𝑎𝑝𝑝 (𝑧)

𝐺(𝑧,𝜃)×𝛺(𝑧,𝜃)
=  −

1

𝐺(𝑧,𝜃)×𝛺(𝑧,𝜃)
 ×

𝑑𝑙𝑛{𝑃𝑔𝑎𝑝(𝑧)}

𝑑𝑧/ cos 𝜃
     (4) 



 

 

 

 

2.2 Lidar models for Canopy Directional Gap Probability and Vertical 
Profile Metrics 

In a waveform-scanning lidar system, the received laser energy is a function of incident 

laser energy, atmosphere conditions, and spatial and spectral properties of targets (i.e. 

canopy and ground). Ni-Meister et al. (2001) developed an approach to derive canopy gap 

probability from lidar waveforms with no requirement for radiometric calibration. The 

basic assumption of the model is that gap probability is the complement of the vertical 

canopy profile as laser energy can only penetrate into the lower canopy layer or ground 

through gaps (including both within-crown gaps and between-crown gaps). Multiple-

scattering effect is not considered in the model since it has a limited contribution (< 10%) 

towards the total waveform energy and a very small impact on the waveform shape 

between canopy top and ground. Based on this model, canopy cover can be calculated using 

the cumulative laser energy return for a known ratio of canopy and ground reflectance as 

follows.  

 

Let Pgap(z+Δz) − Pgap(z) be the expected proportion of laser energy intercepted by the 

canopy elements. Then the laser energy budgets at height z and at ground level are: 

−
𝑑𝑅𝑣(𝑧)

𝑑𝑧
= 𝐽0𝜌𝑣

𝑑𝑃𝑔𝑎𝑝(𝑧,𝜃)

𝑑𝑧/ cos 𝜃
         (5) 

 
𝑅𝑔 = 𝐽0𝜌𝑔𝑃𝑔𝑎𝑝(0, 𝜃)  × cos 𝜃        (6) 

 

where 𝑃𝑔𝑎𝑝(𝑧, 𝜃) and 𝐶𝐶𝐹(𝑧) are the directional gap probability and canopy cover 

fraction above a particular height z within canopy respectively. The terms 𝑅𝑣(𝑧), 𝑅𝑣(0) 

and 𝑅𝑔 are the integrated laser energy returns from the canopy top to height z, from canopy 

top to canopy bottom, and from the ground return individually. The 𝐽0 is the irradiance of 

emitted laser pulse and is only known for GEDI when the Level 1B waveforms are 

calibrated, the emitted pulse power is measured, and atmospheric transmittance is derived. 

The ρv, ρg are canopy and ground reflectance respectively, while in practice, they can also 

be uncalibrated reflectance values (also known as volumetric scattering coefficients in the 

literature) since it is only their ratio impacts retrieval results. 

The boundary conditions are:  

1) There is no laser energy at the top of canopy: Rv(max_ht) = 0; and 

2) the gap is constant above canopy top: Pgap(max_ht, 𝜃) = 1. 

 

By solving above equations under these boundary conditions, we have: 

 

𝑃𝑔𝑎𝑝(𝑧, 𝜃) = 1 −
 𝑅𝑣(𝑧)

𝑅𝑣(0)+𝑅𝑔×
𝜌𝑣
 𝜌𝑔

        (7) 

 

𝐶𝐶𝐹(𝑧) = (1 − 𝑃𝑔𝑎𝑝(𝑧, 𝜃)) × cos 𝜃        (8) 

 

𝐹𝑎𝑝𝑝(𝑧1~ 𝑧2) =  ∑
𝑑 𝑙𝑜𝑔𝑃𝑎𝑝(𝑧,𝜃)

𝑑𝑧/ cos 𝜃
∆𝑧

𝑧2
𝑧1

        (9) 

    



 

 

 

 

The log transformation of gap probability follows the same approach in MacArthur and 

Horn (1969), that the density of foliage can be estimated from the distribution of first leaf 

distance. The full details of this model can be found in Ni-Meister et al. (2001). Note the 

impact of finite Δz = 0.15 m is ignored here since it is typically much smaller than canopy 

height. The viewing angle of GEDI is near-nadir (< 6 ° most of the time), and we also 

ignore variations in leaf angle distribution when calculating vertical LAI profile as the 

summation of vertical foliage density from canopy height z1 to z2:  

 

𝑃𝐴𝐼(𝑧1~ 𝑧2) =
1

𝐺×𝛺
× ∑ 𝐹𝑎𝑝𝑝(𝑧)∆𝑧

𝑧2
𝑧1

       (10) 

 

GEDI will sample the PAI and canopy cover profile between the estimated ground 

elevation (z = 0) and the maximum canopy height at a specified vertical interval. We do 

not aim to delivering products at the native vertical resolution because the returned 

waveform is convolved by system pulse width, detector response function and the 

illuminated target. The impact of convolution on the estimation of vertical foliage profiles 

may be corrected by either applying a deconvolution technique, or aggregating waveform 

bins to a coarser vertical resolution. In practice, there seems to be a trade-off between 

vertical resolution and retrieval accuracy as examined in a previous study (Tang et al. 

2016). 

2.3 Foliage Height Diversity (FHD) 

The foliage height diversity (FHD) is a canopy structural index describes the vertical 

heterogeneity of foliage profile (MacArthur & Horn 1969). It can be quantified as: 

 
𝐹𝐻𝐷 =  − ∑ 𝑁𝑖  × 𝑙𝑜𝑔 (𝑁𝑖)𝑖         (11) 

 

where 𝑁𝑖  is the proportion of vertical LAI profile lies in the ith of the chosen horizontal 

layers.  

 

𝑁𝑖 =
𝐿𝐴𝐼(𝑧𝑖~ 𝑧𝑖+1)

𝐿𝐴𝐼
 × ∆𝑧          (12) 



 

 

 

 

3.0 ALGORITHM 

The baseline algorithm to retrieve GEDI canopy profile metrics is based on the lidar-PAI 

model described in Section 2, with following required input parameters: 1) the integrated 

laser energy returns from the canopy Rv(z) and ground Rg. 2)  leaf projection coefficient 

G, 3) clumping index 𝛺 and 4) the ratio of canopy and ground volumetric backscattering 

coefficients ρv/ρg.  

 

A constant projection coefficient of G = 0.5, corresponding to a uniform random 

distribution, is used in this ATBD and is based on an assumption of a random distribution 

of canopy elements that has been published and widely used across multiple biomes. The 

clumping index cannot be derived from GEDI data independently and a constant 𝛺=1 is 

used here to calculate PAI (and its vertical profile). 

3.1 Overview 

The processing chain is initialized with inputs variable from lower level GEDI data 

products (L1A, L1B and L2A) to retrieve both the vertical canopy energy distribution Rv(z) 

and ground energy (Rg). Next, the vertically resolved directional canopy gap probability 

of an individual footprint, Pgap(,z), is calculated from Rv(z) and the ρv/ρg value extracted 

from external grids that are initialized pre-launch and updated post-launch. This external 

grid will be updated post-launch using GEDI waveforms of highest quality that have high 

beam penetration capacity (through aerosol and dense forests) and low atmospheric and 

topographic impacts. All other output GEDI L2B cover and vertical profiles metrics are 

subsequently calculated from the vertical directional gap probability profiles with quality 

flags for exception handling. More details about product and data variables generated or 

used in this ATBD can be found in Error! Reference source not found. and Table 3. 

 



 

 

 

 

 

Figure 4. GEDI L2B algorithm flowchart 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

3.2 Product Names and Data Variables 

Table 2.  GEDI L2B Data Product Names 

Data 
Product 
Level 

Data Product 
Name 

Spatial 
Resolution 

Parameter 
Name 

Target 
Area 

Description Source ATBD 

L2 Canopy Cover 
and Vertical 
Profile 
Metrics 

Footprint  Canopy Cover 
Fraction (CCF) 

All land 
surfaces 

Direct estimate of total 
CCF 

GEDI02_B 
(Cover and 
Vertical 
Profile 
Metrics) 

L2 Canopy Cover 
and Vertical 
Profile 
Metrics 

Footprint  Plant Area 
Index (PAI) 

All land 
surfaces 

Modelled estimate of 
PAI 

GEDI02_B 
(Cover and 
Vertical 
Profile 
Metrics) 

L2 Canopy Cover 
and Vertical 
Profile 
Metrics 

Footprint  Vertical Cover 
Profile 

CCF > 0 Direct estimate of the 
cumulative vertical 
cover profile at 5 m 
vertical resolution. 

GEDI02_B 
(Cover and 
Vertical 
Profile 
Metrics) 

L2 Canopy Cover 
and Vertical 
Profile 
Metrics 

Footprint  Vertical PAI 
Profile 

CCF > 0 Modelled estimate of 
the cumulative vertical 
PAI profile at 5 m 
vertical resolution. 

GEDI02_B 
(Cover and 
Vertical 
Profile 
Metrics) 

L2 Canopy Cover 
and Vertical 
Profile 
Metrics 

Footprint  Vertical Plant 
Area Volume 
Density Profile 

CCF > 0 Modelled estimate of 
the vertical plant area 
volume density profile 
with vertical resolution 
of 5m  

GEDI02_B 
(Cover and 
Vertical 
Profile 
Metrics) 

L2 Canopy Cover 
and Vertical 
Profile 
Metrics 

Footprint  Foliage Height 
Diversity (FHD) 

CCF > 0 Canopy index that 
describes the vertical 
heterogeneity of the 
foliage profile 

GEDI02_B 
(Cover and 
Vertical 
Profile 
Metrics) 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 3. Data product variables. These include ancillary data sets that are required in the 

algorithm for generating the standard product. 

Product Name Units Description Variable 
Required 
Precision 

Min Max Source 

GEDI02_B 
Elevation of 
lowest mode 

m 

elevation of 
center of 
lowest mode 
relative to 
reference 
ellipsoid 

elev_lowest
mode 

NA 
-1 

km 

25 

km 
GEDI02_A 

GEDI02_B 
Canopy top 
location 

NA 

Sample 
number of 
highest 
detected 
return 

toploc NA 0 1420 GEDI02_A 

GEDI02_B 

Ground 
bottom 
location 

NA 

Sample 
number of 
lowest 
detected 
return 

botloc NA 0 1420 GEDI02_A 

GEDI02_B 

Directional 
gap 
probability 

NA 

The 
probability a 
beam of 
infinitesimal 
width will 
penetrate to 
the ground 
surface at 
view zenith 
angle theta 

Pgap(z, 
theta) 

0.001 0 1 Algorithm 

GEDI02_B 
Canopy Cover 
Fraction 

NA Total cover cover 0.001 0 1 Product 

GEDI02_B 

Vertical profile 
of canopy 
cover 

NA 

Cumulative 
canopy cover 
from z=H to 
z=0, where 
cover_z(H) =0 

cover_z 

 
0.001 0 1 Product 

GEDI02_B PAI 
m2 / 
m2 

One half of the 
total plant 
area projected 
per unit 
ground 
surface.  

pai 0.01 0 16 Product 

GEDI02_B 
Vertical PAI 
Profile 

m2 / 
m2 

Cumulative 
PAI from z=H 
to z=0, where 
pai_z(H) = 0 

pai_z 0.01 0 16 Product 



 

 

 

 

GEDI02_B 

Plant area 
volume 
density profile 

m2 / 
m3 

Foliage profile 
assuming a 
random 
distribution of 
canopy 
elements and 
constant leaf 
angle with 
height 

pavd_z 0.0001 0 inf Product 

GEDI02_B 
Maximum 
canopy height 

cm 

Maximum 
above ground 
height of the 
canopy within 
a waveform 
footprint 

Rh100 0.01 

-

213

00 

2130

0 
GEDI02_A 

GEDI02_B 

Ground 
scattering 
coefficient 

counts 

Volumetric 
scattering 
coefficient of 
the ground 
(reflectance x 
phase 
function) 

rhog 0.001 0 1 Product 

GEDI02_B 

Canopy 
scattering 
coefficient 

counts 

Volumetric 
scattering 
coefficient of 
the canopy 
(reflectance x 
phase 
function) 

rhov 0.001 0 1 Product 

GEDI02_B 

Ground 
energy 
summation 

counts 

Integral of the 
denoised 
ground 
waveform 

Rg 0.001 0 Inf GEDI01_A 

GEDI02_B 

Canopy 
energy 
summation 

counts 

Integral of the 
denoised 
canopy 
waveform 

Rv 0.001 0 inf GEDI01_A 

GEDI02_B 

Local beam 
elevation 
angle 

radian
s 

Elevation of 
the unit 
pointing 
vector for the 
laser in the 
local ENU 
frame.  

local_beam_
elevation 

0.01 0 Pi/2 GEDI01_B 

GEDI02_B 

Foliage 
clumping 
factor 

NA 

Ratio of 
Pgap(theta) 
for a clumped 
canopy and 
Pgap(theta) 
for a random 

Omega 0.01 0 1 External 



 

 

 

 

canopy of the 
same LAI 

GEDI02_B 
Ross-Nilson’s 
G-function 

NA 

Mean 
projection of 
unit leaf area 
on a plane 
perpendicular 
to the 
direction of 
the laser beam 
at view zenith 
angle theta 

Ross-G 0.01 0 1 External 

GEDI02_A Land cover  NA 

The land cover 
and biome 
type of the 
illuminated 
surface 
identified by 
the external 
source 

LC NA 0 255 External 

GEDI01_A 

Waveform 
sensitivity 
quality 

NA 

The flag if the 
laser energy 
penetrates 
through the 
canopy and 
triggers a 
ground return 

Sensitivity 0.001 0 1 GEDI02_A 

GEDI02_B 
Waveform 
Surface flag 

NA 
The flag if the 
laser hits the 
ground surface 

Surface_flag NA 0 1 GEDI02_A 

GEDI02_B Leaf off status NA 

The flag 
indicating if 
the laser 
illuminated 
forests have a 
leaf-on 
phenological 
status 
identified by 
external 
source 

leaf_off_flag NA 0 1 External 

GEDI02_B 

Selected L2A 
algorithm 
setting 

NA 

ID of L2A 
algorithm 
selected as 
identifying the 
lowest non-
noise mode 

selected_l2a
_algorithm 

NA 1 6 GEDI02_A 

GEDI02_B 

Selected Rg 
(ground) 
waveform 
model 

NA 

0 = L2B 
algorithm not 
run; 1 = 
algorithm 1 

selected_rg_
algorithm 

NA 0 3 Product 



 

 

 

 

(successful); 2 
= algorithm 1 
(partial 
success - valid 
tx_eg 
parameters 
were 
unavailable); 3 
= algorithm 2 

 

 

3.3 Implementation 

The lidar waveforms and geolocation parameters are provided by the Level 1B and 2A data 

products. Footprint level variations in the foliage element projection coefficient or 

clumping index are not considered in the algorithm because such information cannot be 

directly extracted from GEDI waveforms alone. Neither is available a global clumping 

index product at the GEDI footprint level: the clumping condition at the ~25 m footprint 

scale can be quite different from that of a much coarser resolution (e.g. a 500m pixel from 

a Moderate Resolution Imaging Spectroradiometer (MODIS) product (He et al. 2012)). 

Therefore we assume a random uniform angular distribution of canopy scattering elements 

and constant leaf angle with height to set a constant projection coefficient of G = 0.5 and 

clumping index 𝛺 = 1 for all woody vegetation. In the future we will test and possibly 

incorporate foliage clumping databases in development (e.g. Pisek et al., 2015) to further 

improve GEDI-based products.  

 

The input canopy/ground waveform parameters are provided by the lower level GEDI 

product (Level 1A and 2A), originally based on a Gaussian decomposition method (Hofton 

et al. 2000). This method has been widely used to process waveforms of large footprint 

lidar systems (e.g. ICESat, or the Land Vegetation and Ice Sensor (LVIS) as the airborne 

prototype of GEDI). The ground energy distribution, Rg, was modelled by fitting an 

exponentially modified Gaussian (exGaussian) function to the belowground portion of the 

received waveform (rxwave). Here we did not use the traditional Gaussian function 

because of the asymmetry of transmitted waveform, considering the ground return should 

be a convolution of the ground pulse (mostly Gaussian shape due to slope) and the 

transmitted waveform. The exGaussian function utilized a fourth parameter, gamma (γ), in 

addition to traditional Gaussian function’s amplitude (A), center (μ), sigma (σ), to describe 

a skewed normal distribution as observed in the transmitted waveform (txwave). The σ and 

γ estimated from the txwave exGaussian fitting (tx_egsigma and tx_eggmma) are applied 

as boundary constraints to fit the Rg for each rxwave. Finally, the Levenberg-Marquardt 

least-square method is used to fit the below-ground range of rxwave, from the highest 

threshold (lowestmode + a buffer size on Rg center) to the signal truncation at the trailing 

edge (botloc). 

 

If the default ground fitting algorithm fails to converge, a match-filter method is used to 

identify the Rg fit. It is achieved by applying a convolution of the mirrored transmit 



 

 

 

 

waveform over the received waveform. At the expense of effective vertical resolution, this 

operation could mitigate the asymmetrical effect while retaining the original estimate of 

ground elevation. Another drawback of the method is the wider spread of ground energy 

distribution. Nevertheless, it provided a simple and efficient mathematical solution to 

estimate the contribution from ground energy in a waveform. To estimate the total integral 

of Rg, the belowground portion of the convolved rxwave is mirrored. 

 

 

Figure 5. Examples of the recorded and fitted GEDI waveforms: (A) transmitted waveform (txwave) and 

(B) the correspondent return waveform (rxwave). The traditional Gaussian function cannot fully characterize 

the asymmetrical txwave, while the exponentially modified Gaussian (exGaussian) function can reconstruct 

it remarkably well when adding a fourth skewness parameter, gamma. The parameters of exGaussian 

estimated from the txwave are also transferable when fitting the rxwave, 

 

The ratio of canopy and ground reflectance is initialized with a default global value (1.5) 

for the release of version 1. These values can be updated post-launch using a regression 

analysis between multiple GEDI footprints. The rest of this section will focus on the 

retrieval of ρv/ρg in both pre-launch and post-launch modules. 

3.3.1 Pre-launch initialization 

The specification of ρv/ρg requires pre-launch initialization to a constant value globally (the 

simplest case) or allowing variation in constant values between regions. The use of constant 

ρv/ρg regionally has been a reasonable assumption and a common practice to derive above 

canopy profile metrics from both airborne and spaceborne waveform lidar systems. High 

retrieval accuracy has been achieved across major biomes in comparison with different 

reference data (e.g. destructive samplings, terrestrial laser scanning (TLS), LAI-2000 and 

hemispherical photo) (Armston et al. 2013; Tang et al. 2012; Tang, Brolly, et al. 2014; 

Hancock et al. 2014). 

 

The ρv/ρg value comes from two baseline designs (1) a global constant value and (2) a pre-

launch LUT identifying constant ρv/ρg values for regional strata. In baseline #1, we apply 

a global average value of 1.5 although it could typically vary from about 1.0 to 2.0 for 

1064-nm laser at the footprint level in space and time (Harding et al. 2001; Tang et al. 



 

 

 

 

2012). In baseline #2, biome-level constant ρv/ρg vales are determined by applying the Pgap-

reflectance model to LVIS and other 1064 nm airborne lidar data over a range of 

landscapes. Technical details on this model can be found in Section 3.2.2. Existing LVIS 

acquisitions have covered major biome types, enabling a reasonable biome representative 

for the reflectance ratio. These include tropical evergreen rainforests, temperate deciduous 

broadleaf forests, temperate mixed forests, wetland forests and mountainous conifer 

forests. We follow MODIS IGBP land cover classification type and assign LVIS-based 

estimates to corresponding categories (Table 4). There are more LVIS flights just completed 

but unprocessed or to be deployed subject to NASA’s requirement in the upcoming years.  

 

Table 4. The biome-level 1064-nm ρv/ρg values estimated from processed airborne LVIS campaigns 

(those in italic)  

MODIS IGBP 

Type 

LVIS Acquisition ρv/ρg 

Evergreen Needleleaf 

forest (1), Deciduous 

Needleleaf forest (3)  

Sierra Nevada forest (1999, 2008) 1.2 

Evergreen broadleaf 

forest (2) 

Costa Rica (1998, 2005), Panama (1998), Gabon (2016) 1.5 

Deciduous broadleaf 

forest (4) 

Mid-Atlantic, USA (2003), Duke forest, NC, USA (1999) 1.3 

Mixed forest (5) New England, USA (2003, 2009) 1.3 

Others  1.5 

 

 

3.3.2 Post-launch updating 

The external grids of Pgap, ρv, and ρg are updated post-launch (approximately 6 months to 

obtain sufficient GEDI observations), based on the model outlined in Armston et al. (2013). 

The basic model is: 

 
𝑅 = (1 − 𝑃𝑔𝑎𝑝)𝜌𝑣 + 𝑃𝑔𝑎𝑝𝜌𝑔        (13) 

 

where assuming single scattering and a linear relationship between the recorded signal and 

power received at-sensor, the total waveform integral (R) is the sum of the canopy and 

ground scattering coefficients weighted by fraction of the signal intercepted by the canopy 

and ground, respectively. Under these assumptions, Pgap may be estimated from R by:  

 

𝑃𝑔𝑎𝑝(𝜃) = 1 −
𝑅−𝜌𝑔

𝜌𝑔−𝜌𝑣
         (14) 

 



 

 

 

 

This formulation is very useful when we have prior knowledge of ρv and ρg, since we do 

not need to separate the canopy and ground signals. It will also allow an extra constraint 

on ground finding, once sufficient estimates of ρv and ρg have been acquired to enable 

gridding post-launch. To update the external grids of ρv and ρg, we assume that adjacent 

footprints have locally constant ρv and ρg over small geographical extents and at the 

footprint resolution. The ρv and ρg values, under such assumption, can therefore be 

estimated using a linear regression analysis based on observations of adjacent footprints 

but at different canopy cover levels. The linear model is 

 

𝑅𝑔 = 𝜌𝑔 −
𝜌𝑔

𝜌𝑣
𝑅𝑣          (15) 

 

which may be solved using simple linear regression (Armston et al., 2013), or Orthogonal 

Distance Regression (ODR) assuming equal variance in Rv and Rg (Tang et al., 2016). This 

Pgap-reflectance model was originally implemented for airborne lidar systems (Armston 

et al. 2013, but can also be applied to large footprint lidar such as LVIR or GEDI. Indeed, 

its primary assumption is more realistic for large footprint lidar than small-footprint ALS, 

given a stronger edge effect and higher canopy heterogeneity observed with smaller 

footprint sizes (Armston 2013). The pre-launch specification will largely depend on the 

availability of LVIS observations (see 3.3.1). It is though possible to incorporate data 

obtained from other 1064 nm airborne lidar systems after more through tests.  

 

The following steps are undertaken to update the post-launch estimation of ρv/ρg grids from 

GEDI: 

1. Estimate apparent lidar reflectance values using the atmospheric extinction 

coefficient calculated from GEDI Level 1-2 A. 

2. Spatial clustering of GEDI shots to solve for ρv/ρg 

3. Evaluate quality of model fitting 

4. Update the ancillary data product with new ρv/ρg estimates based on evaluation 

criteria (e.g. good ODR fitting results with r2 > 0.5). 

 

We acknowledge significant spatial variance may exist at scales equal to or greater than 

the GEDI footprint size and the sensitivity of cover and PAI to this variance needs to be 

considered. Both algorithms (2a and 2b) to estimate ρv/ρg may require additional 

development and testing to finalize the operational algorithm. The implementation is also 

subject to GEDI beam data quality, which can be significantly impacted by cloud and/or 

aerosol contamination. As a result, we aim to generate an initial version using pre-launch 

specification and then update the data product using post-launch estimates. This can be an 

iterative process as GEDI continues collecting data during its two-year mission.  

 

The strategy for updating external grids of post-launch provides the capability and 

flexibility to refine the default algorithm, keep the external grids under version control and 

accessible to other GEDI data product algorithms. The first round of post-launch update is 

currently scheduled at the end of the first data acquisition period (6 months), pending 

QA/QC and geographical availability of GEDI data. It is expected that these observations 

can fill most of ecoregion-level gaps and help provide estimates at a coarse resolution (the 



 

 

 

 

exact resolution will depend on the spatial arrangement of the data sets available for such 

analysis). The baseline for post-launch processing is that all footprints will be assigned a 

constant value (version 01). 

 

Figure 6. Distribution of LVIS derived ρv/ρg across major landscape types: conifer forests in California 

(median: 1.2), temperate mixed forests in New Hampshire (median: 1.3), temperate deciduous forests in 

Maryland (median: 1.3), and tropical evergreen forests in La Selva, Costa Rica (median: 1.5). 

 

The initial algorithm used Orthogonal Distance Regression (ODR) and assumes constant 

ρv/ρg over a regional area, presently specified as a cell between 1 km and 10 km size. 

Assuming equal error variance between canopy and ground laser energy, we fit the slope 

and intercept of Eqn. 15 using Orthogonal Distance Regression (ODR). This also assumes 

ρv/ρg does not change over time between overpasses. The ρv/ρg value is equal to 𝛽−1. A 

number of ~20 GEDI shots is expected for each 1 km pixel given the 60 m along-track 

spacing distance. If the actual acquisition number is less than 10, or all these footprints 



 

 

 

 

have very little variation in cover (exact threshold under experiment), the spatial cluster 

analysis will be extended to nearby land cover pixels with an increment of 1 km. A 

maximum cluster size is set as 10 km × 10 km. 

 

 

Figure 7. An example of estimating ρv/ρg in Lope National Park, Gabon using a subset of airborne LVIS data 

(prototype of GEDI). The slope of an ODR produces an estimate value of 1.3 in this case. 

 

3.4 Ancillary Data Requirements 

Specification or estimation of three ancillary parameters are required in the GEDI L2B 

algorithm, including projection coefficient, clumping index, and empirical lidar 

canopy/ground reflectance ratio. Their inputs come either directly from empirical model 

assumptions, or from estimates of external datasets at ecoregion level (see Section 3.2 and 

3.3). Other ancillary variables include leaf-on and –off status, percentage of urban built-up 

area, Landsat and MODIS based tree cover estimates. More details of these ancillary 

products can be found in the document of GEDI ancillary data product report. 

3.5 Error Budget and Uncertainties 

The lidar-PAI theoretical model applied in this algorithm has been demonstrated in 

previous studies (Ni-Meister et al. 2010; Armston et al. 2013; Tang et al. 2012). We 

therefore do not further validate the model itself in this document, but aim to quantify 

model uncertainties from the input variables — Rv, Rg, and ρv/ρg.  

 

In the GEDI L2B product we report the predicted error of Rg fitting in rxwave as well as 

its associated uncertainty of Pgap for each corresponding L2A processing algorithm. Note 

this predicted error is not equivalent to its measurement error (i.e. relative to an 



 

 

 

 

independent reference) but aims to help algorithm diagnosis as an additional quality flag. 

In general, there has been no consistent bias in the estimates of Rv and Rg along gradients 

of canopy cover and topographic slope based on comparisons between pseudo-GEDI 

products and airborne lidar data (Hancock et al. 2019). However, precisions of the pseudo-

GEDI products tend to be lower over a combination of high canopy cover and high slope 

gradient. The estimates of Rv and Rg achieve the highest accuracy (error less than 10% in 

Hancock et al. 2019) over forests of moderate canopy cover and on relatively flat ground 

surface (<15° slope, Tang et al. 2014).  

 

The values of ρv/ρg are obtained from external ancillary data sets: either a LUT built in pre-

launch calibration or an updated estimation from the post-launch module. The LUT can be 

continuously updated post-launch (see Section 3.3). We expect relatively low uncertainties 

in ρv/ρg retrievals using the post-launch module (with quality control of model fitting). Yet 

relatively larger errors might occur at individual footprint using the ecoregion-level 

estimates, or over areas where the post-launch module fails possibly due to high level of 

spatial heteroscedasticity. Uncertainties of ρv/ρg estimates and their impacts on retrievals of 

canopy profiles have been assessed in previous lidar studies (Armston 2013 and Tang et 

al. 2012). In general, there are non-linear error responses in the gradients of canopy cover 

and LAI. For retrievals of canopy cover, the uncertainty of ρv/ρg has a stronger impact at 

the lower end, and almost no impact over extremely dense canopies (e.g. > 90%). It has the 

opposite impact on LAI with larger uncertainty level at the high end. They will be 

quantified using spatial statistical analysis at ecoregion level and reported in the final post-

launch validation. 

 

 

Figure 8. An illustrative example of footprint level GEDI L2 product, including vertical LAI profile and 

foliage profile. Red-dashed lines along the gap probability distribution profile show an impact on LAI 

retrievals from ±50% in ρv/ρg. 

 

3.6 Implementation Considerations 

3.6.1 Algorithm Sequence 

The main algorithm sequence for generating L2B product: 

 For each footprint: 



 

 

 

 

1. Read corrected RX-waveform, local beam elevation angle, and geolocation 
(lat/lon) & elevation information from GEDI 1B product. 

2. Read elevation of the lowest mode (elev_lowestmode) as the mean ground 
surface elevation, sample number of the highest and lowest detected returns 
(toploc and botloc). 

3. Fit the Ground component of rxwave (Rg) using an exponentially modified 
Gaussian model, and output fitting parameters (rg_eg_amplitude, 
rg_eg_center, rg_eg_sigma and rg_eg_gamma).   

4. Read ancillary data from external datasets based on the latitude/longitude of 
the lowest mode. 

5. Calculate output variables using eq. 7~11 for this footprint. 
6. Output L2B retrieval status and attach flags from lower level GEDI products. 

 

3.6.2 Quality Control and Diagnostics 

Quality control (QC) is an integral part of the GEDI L2B algorithm. The QC steps of the 

L2B are based on flags inherited from the lower level GEDI products and exception 

handlers in the GEDI L2B algorithm. The inherited GEDI inputs include GEDI L1B 

degrade flag, GEDI L1B stale return flag, GEDI 2A waveform sensitivity metric, GEDI 

L2A RX-wave assessment flag, GEDI 1A leaf-on flag and GEDI 2A simplified quality 

flag. Outputs of the GEDI L2B QC products include GEDI L2B Retrieval status including 

the selected setting of L2A algorithm and L2B ground fitting algorithm. The users are 

recommended to explore the QC flags to re-analyze or subset the complete GEDI records 

for particular scientific interests. 

 

3.6.3 Latency 

Release of GEDI L2B product is consistent with GEDI L1A, L1B and L2A. Data derived 

from the post-launch module will be continuously updated as new data acquisitions 

accumulate. An updated GEDI L2B product is expected to be released 6 months after the 

completion of data acquisition. 
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GLOSSARY/ACRONYMS 

ATBD Algorithm Theoretical Basis Document 

BRDF Bidirectional Reflectance Distribution Function 

DESDynI Deformation, Ecosystem Structure and Dynamics of Ice 

FHD Foliage Height Diversity 

GEDI Global Ecosystem Dynamics Investigation 

GORT Geometric Optical Radiative Transfer 

ICESat Ice, Cloud and Land Elevation Satellite 

IGBP International Geosphere-Biosphere Programme 

LAI Leaf Area Index 

LVIS Land, Vegetation and Ice Sensor 

LUT Look-up Table 

MISR Multi-angle Imaging SpectroRadiometer 

MODIS Moderate Resolution Imaging Spectroradiometer 

ODR Orthogonal Distance Regression 

PAI Plant Area Index 

PAVD Plant Area Volume Density 

QC Quality Control 

TBD To Be Determined 

TLS Terrestrial Laser Scanning 

VCL Vegetation Canopy Lidar 

VIIRS Visible Infrared Imaging Radiometer Suite 

 
 


