@~ o
S
o
0 O
e 0.
PDAL: Point cloud Data Abstraction
Library

Release 2.1.0

Andrew Bell
Brad Chambers
Howard Butler
Michael Gerlek
PDAL Contributors

Jun 25, 2020

10

11

CONTENTS

News 3
1.1 03-21-2020 e e 3
About 5
2.1 About e e e 5
Download 13
3.1 Download. e e e e e 13
Quickstart 17
4.1 Quickstart L e 17
Applications 25
5.1 Applications 25
Community 43
6.1 Community e e e e e 43
Drivers 45
7.1 Pipeline e e e e 45
7.2 Readers e e e e 53
T3 WIIErS . . . o o o e e e e e e e e e e e 107
T4 Flters e e e e e e e e e e e e 140
Dimensions 251
8.1 DIMensions v v v e e e e e e e e e e 251
Types 255
0.1 TYPES . . v o e e e e e e e e e e e 255
Python 257
10.1 Python e e e 257
Java 261

11.1 Java s

12 Tutorials
12.1 Tutorials e e e e e e

13 Workshop
13.1 Point Cloud Processing and Analysis with PDAL

14 Development
14.1 Development e e e e e e e
14.2 Project o i e e e e e e e e e e e
143 APIL e e e
144 FAQ. . . . o e e e
145 License o i e e e e e e
14.6 References e e e

15 Indices and tables
Bibliography

Index

267
267

301
301

393
393
447
465
532
534
535

537

539

541

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

rﬂr—x o

9**.‘ dal
T

PDAL is a C++ BSD (http://www.opensource.org/licenses/bsd-license.php) library for
translating and manipulating point cloud data (http://en.wikipedia.org/wiki/Point_cloud). It is
very much like the GDAL (http://www.gdal.org) library which handles raster and vector data.
The About (page 5) page provides high level overview of the library and its philosophy. Visit
Readers (page 53) and Writers (page 107) to list data formats it supports, and see Filters
(page 140) for filtering operations that you can apply with PDAL.

In addition to the library code, PDAL provides a suite of command-line applications that users
can conveniently use to process, filter, translate, and query point cloud data. Applications
(page 25) provides more information on that topic.

Finally, PDAL speaks Python by both embedding and extending it. Visit Python (page 257) to
find out how you can use PDAL with Python to process point cloud data.

The entire website is available as a single PDF at http://pdal.io/PDAL.pdf

CONTENTS 1

http://www.opensource.org/licenses/bsd-license.php
http://en.wikipedia.org/wiki/Point_cloud
http://www.gdal.org
http://pdal.io/PDAL.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

2 CONTENTS

CHAPTER
ONE

NEWS

1.1 03-21-2020

PDAL 2.1.0 has been released. You can download (page 13) the source code or follow the
quickstart (page 17) to get going in a hurry with Conda.

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

4 Chapter 1. News

CHAPTER
TWO

ABOUT

2.1 About

2.1.1 What is PDAL?

PDAL (https://pdal.io/) is Point Data Abstraction Library. It is a C/C++ open source library
and applications for translating and processing point cloud data
(https://en.wikipedia.org/wiki/Point_cloud). It is not limited to LiDAR
(https://en.wikipedia.org/wiki/Lidar) data, although the focus and impetus for many of the
tools in the library have their origins in LiDAR.

2.1.2 What is its big idea?

PDAL allows you to compose operations (page 140) on point clouds into pipelines (page 45)
of stages. These pipelines can be written in a declarative JSON syntax or constructed using the
available APL

Why would you want to do that?

A task might be to load some ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
(the most common LiDAR binary format) data into a database, but you wanted to transform it
into a common coordinate system along the way.

One option would be to write a specialized monolithic program that reads LAS data, reprojects
it as necessary, and then handles the necessary operations to insert the data in the appropriate
format in the database. This approach has a distinct disadvantage in that without careful
planning it could quickly spiral out of control as you add new little tweaks and features to the
operation. It ends up being very specific, and it does not allow you to easily reuse the
component that reads the LAS data separately from the component that transforms the data.

https://pdal.io/
https://en.wikipedia.org/wiki/Point_cloud
https://en.wikipedia.org/wiki/Lidar
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

o - N T O U R S R,

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

The PDAL approach is to chain together a set of components, each of which encapsulates
specific functionality. The components allow for reuse, composition, and separation of
concerns. PDAL views point cloud processing operations as a pipeline composed as a series of
stages. You might have a simple pipeline composed of a LAS Reader (page 69) stage, a
Reprojection (page 197) stage, and a PostgreSQOL Writer (page 131), for example. Rather than
writing a single, monolithic specialized program to perform this operation, you can
dynamically compose it as a sequence of steps or operations.

l readers.las I—»l filters.reprojection |—>l writers.pgpointcloud I

Fig. 2.1: A simple PDAL pipeline composed of a reader, filter, and writer stages.

A PDAL JSON Pipeline (page 45) that composes this operation to reproject and load the data
into PostgreSQL might look something like the following:

{
"pipeline": [
{
"type":"readers.las",
"filename":"input.las"

"type":"filters.reprojection",
"out_srs":"EPSG:3857"

"type":"writers.pgpointcloud",
"connection":"host="'localhost' dbname='lidar' user='hobu'",
"table":"output",

"srid":"3857"

}

PDAL can compose intermediate stages for operations such as filtering, clipping, tiling,
transforming into a processing pipeline and reuse as necessary. It allows you to define these
pipelines as JSON (https://en.wikipedia.org/wiki/JSON), and it provides a command, pipeline
(page 32), to allow you to execute them.

Note: Raster processing tools often compose operations with this approach. PDAL
conceptually steals its pipeline modeling from GDAL (http://gdal.org/)’s Virtual Raster Format

6 Chapter 2. About

https://en.wikipedia.org/wiki/JSON
http://gdal.org/
http://www.gdal.org/gdal_vrttut.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(http://www.gdal.org/gdal_vrttut.html).

2.1.3 How is it different than other tools?

LAStools

One of the most common open source processing tool suites available for LIDAR processing is
LLAStools (http://lastools.org) from Martin Isenburg (https://www.cs.unc.edu/~isenburg/).
PDAL is different in philosophy in a number of important ways:

1. All components of PDAL are released as open source software under an OSI
(https://opensource.org/licenses)-approved license.

2. PDAL allows application developers to provide proprietary extensions that act as stages
in processing pipelines. These might be things like custom format readers, specialized
exploitation algorithms, or entire processing pipelines.

3. PDAL can operate on point cloud data of any format — not just ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-
Activities.html). LAStools (http://lastools.org) can read and write formats other than
LAS, but relates all data to its internal handling of LAS data, limiting it to dimension
(page 251) types provided by the LAS format.

4. PDAL is coordinated by users with its declarative JSON (page 45) syntax. LAStools is
coordinated by linking lots of small, specialized command line utilities together with
intricate arguments.

5. PDAL is an open source project, with all of its development activites available online at
https://github.com/PDAL/PDAL

PCL

PCL (http://pointclouds.org) is a complementary, rather than substitute, open source software
processing suite for point cloud data. The developer community of the PCL library is focused
on algorithm development, robotic and computer vision, and real-time laser scanner
processing. PDAL can read and write PCL’s PCD format.

Greyhound and Entwine

Greyhound (http://greyhound.io) is an open source software from Hobu, Inc. (https://hobu.co)
that allows clients to query and stream progressive point cloud data over the network. Entwine
(https://entwine.i0) is open source software from Hobu, Inc. that organizes massive point cloud
collections into Greyhound (http://greyhound.io)-streamable data services. These two software
projects allow province-scale LiDAR collections to be organized and served via HTTP clients

2.1. About 7

http://lastools.org
https://www.cs.unc.edu/~isenburg/
https://opensource.org/licenses
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://lastools.org
https://github.com/PDAL/PDAL
http://pointclouds.org
http://greyhound.io
https://hobu.co
https://entwine.io
http://greyhound.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

over the internet. PDAL provides readers.greyhound to allow users to read data into PDAL
processes from that server.

plas.io and Potree

plas.io (http://plas.io) is a WebGL (https://en.wikipedia.org/wiki/WebGL) HTMLS point cloud
renderer that speaks ASPRS LAS
(http://www.asprs.org/Committee-General/LLASer-LAS-File-Format-Exchange-Activities.html)
and LASzip (http://laszip.org) compressed LAS. You can find the software for it at plasiojs.io
and https://github.com/hobu/plasio-ui

Potree (http://potree.org) is a WebGL (https://en.wikipedia.org/wiki/WebGL) HTMLS point
cloud renderer that speaks ASPRS LAS
(http://www.asprs.org/Committee-General/LLASer-LAS-File-Format-Exchange-Activities.html)
and LASzip (http://laszip.org) compressed LAS. You can find the software at
https://github.com/potree/potree/

Note: Both renderers can now consume data from Greyhound. See them in action at
http://speck.ly and http://potree.entwine.io

Others

Other open source point cloud softwares tend to be Desktop GUI, rather than library, focused.
They include some processing operations, and sometimes they even embed tools such as
PDAL. We’re obviously biased toward PDAL, but you might find useful bits of functionality in
them. These other tools include:

* libLAS (http://liblas.org)
* CloudCompare (http://www.danielgm.net/cc/)
 Fusion (http://www.idaholidar.org/tools/fusion-1dv/)

* OrfeoToolbox (https://www.orfeo-toolbox.org/)

Note: The libLLAS (http://liblas.org) project is an open source project that pre-dates PDAL,
and provides some of the processing capabilities provided by PDAL. It is currently in
maintenance mode due to its dependence on LAS, the release of relevant LAStools capabilities
as open source, and the completion of Python LAS (https://pypi.python.org/pypi/laspy/1.4.1)
software.

8 Chapter 2. About

http://plas.io
https://en.wikipedia.org/wiki/WebGL
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
https://github.com/hobu/plasio-ui
http://potree.org
https://en.wikipedia.org/wiki/WebGL
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
https://github.com/potree/potree/
http://speck.ly
http://potree.entwine.io
http://liblas.org
http://www.danielgm.net/cc/
http://www.idaholidar.org/tools/fusion-ldv/
https://www.orfeo-toolbox.org/
http://liblas.org
https://pypi.python.org/pypi/laspy/1.4.1

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

2.1.4 Where did PDAL come from?

PDAL takes its cue from another very popular open source project — GDAL (http://gdal.org/).
GDAL is Geospatial Data Abstraction Library, and it is used throughout the geospatial
software industry to provide translation and processing support for a variety of raster and
vector formats. PDAL provides the same capability for point cloud data types.

PDAL evolved out of the development of database storage and access capabilities for the U.S.
Army Corps of Engineers CRREL (http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-
Sheet-Article-View/Article/476649/remote-sensinggeographic-information-systems-center/)
GRiD (http://lidar.i0/) project. Functionality that was creeping into libLLAS (http://liblas.org/)
was pulled into a new library, and it was designed from the ground up to mimic successful
extract, transform, and load libraries in the geospatial software domain. PDAL has steadily
attracted more contributors as other software developers use it to provide point cloud data
translation and processing capability to their software.

How is point cloud data different than raster or vector geo data?

Point cloud data are indeed very much like the typical vector point data type of which many
geospatial practitioners are familiar, but their volume causes some significant challenges.
Besides their X, Y, and Z locations, each point often has full attribute information of other
things like Intensity, Time, Red, Green, and Blue.

Typical vector coverages of point data might max out at a million or so features. Point clouds
quickly get into the billions and even trillions, and because of this specialized processing and
management techniques must be used to handle so much data efficiently.

The algorithms used to extract and exploit point cloud data are also significantly different than
typical vector GIS work flows, and data organization is extremely important to be able to
efficiently leverage the available computing. These characteristics demand a library oriented
toward these approaches and PDAL achieves it.

Note: Possible point cloud dimension types provided and supported by PDAL can be found at
Dimensions (page 251).

2.1.5 What tasks are PDAL good at?

PDAL is great at point cloud data translation work flows. It allows users to apply algorithms to
data by providing an abstract API to the content — freeing users from worrying about many
data format issues. PDAL’s format-free worry does come with a bit of overhead cost. In most
cases this is not significant, but for specific processing work flows with specific data,
specialized tools will certainly outperform it.

2.1. About 9

http://gdal.org/
http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/476649/remote-sensinggeographic-information-systems-center/
http://lidar.io/
http://liblas.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

In exchange for possible performance penalty or data model impedance, developers get the
freedom to access data over an abstract API, a multitude of algorithms to apply to data within
easy reach, and the most complete set of point cloud format drivers in the industry. PDAL also
provides a straightforward command line, and it extends simple generic Python processing
through Numpy. These features make it attractive to software developers, data managers, and
scientists.

2.1.6 What are PDALs weak points?

PDAL doesn’t provide a friendly GUI interface, it expects that you have the confidence to dig
into the options of Filters (page 140), Readers (page 53), and Writers (page 107). We
sometimes forget that you don’t always want to read source code to figure out how things
work. PDAL is an open source project in active development, and because of that, we’re
always working to improve it. Please visit Community (page 43) to find out how you can
participate if you are interested. The project is always looking for contribution, and the mailing
list is the place to ask for help if you are stuck.

2.1.7 High Level Overview

PDAL is first and foremost a software library. A successful software library must meet the
needs of software developers who use it to provide its software capabilities to their own
software. In addition to its use as a software library, PDAL provides some command line
applications (page 25) users can leverage to conveniently translate, filter, and process data with
PDAL. Finally, PDAL provides Python (http://python.org/) support in the form of embedded
operations and Python extensions.

Core C++ Software Library

PDAL provides a C++ API (page 465) software developers can use to provide point cloud
processing capabilities in their own software. PDAL is cross-platform C++, and it can compile
and run on Linux, OS X, and Windows. The best place to learn how to use PDAL’s C++ AP is
the rest suite (page 456) and its source code
(https://github.com/PDAL/PDAL/tree/master/test/unit).

See also:

PDAL software (page 267) development (page 416) tutorials (page 429) have more
information on how to use the library from a software developer’s perspective.

Command Line Utilities

PDAL provides a number of applications (page 25) that allow users to coordinate and construct
point cloud processing work flows. Some key tasks users can achieve with these applications

10 Chapter 2. About

http://python.org/
https://github.com/PDAL/PDAL/tree/master/test/unit

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

include:

* Print info (page 29) about a data set

Data rranslation (page 38) from one point cloud format to another

Application of exploitation algorithms

Generate a DTM

Remove noise

Reproject from one coordinate system to another

Classify points as ground/not ground (page 27)
* Merge (page 32) or split (page 35) data

Catalog (page 37) collections of data

Note: The command line utilities are often simply pipeline (page 32) and Pipeline (page 45)
collected into a convenient application. In many cases you can replicate the functionality of an
application entirely within a single pipeline.

Python API

PDAL supports both embedding Python (http://python.org/) and extending with Python
(http://python.org/). These allow you to dynamically interact with point cloud data in a more
comfortable and familiar language environment for geospatial practitioners.

See also:

The Python (page 257) document contains information on how to install and use the PDAL
Python extension.

Julia Plugin

PDAL supports embedding |Julial filters. These allow you to dynamically interact with point
cloud data in a more comfortable and familiar language environment for geospatial
practitioners, while still maintaining high performance.

Additionally the TypedTables.jl, RoamesGeometry.jl and AcceleratedArrays.jl libraries
provide some very high-level interfaces for writing efficient filters.

See also:

The github repo at https://github.com/cognitive-earth/PDAL-julia contains a docker image,
build instructions and some sample filters.

2.1. About 11

http://python.org/
http://python.org/
https://github.com/cognitive-earth/PDAL-julia

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Documentation for the stage filters.julia (page 247)

2.1.8 Conclusion

PDAL is an open source project for translating, filtering, and processing point cloud data. It
provides a C++ API, command line utilities, and Python extensions. There are many open
source software projects for interacting with point cloud data, and PDAL’s niche is in
processing, translation, and automation.

12 Chapter 2. About

CHAPTER
THREE

DOWNLOAD

3.1 Download

Contents

* Download (page 13)
Current Release(s) (page 13)

Past Releases (page 14)

Development Source (page 14)

Binaries (page 14)
* Windows (page 15)

*

RPMs (page 15)

*

Debian (page 15)

*

Alpine (page 15)
Conda (page 16)

*

3.1.1 Current Release(s)

e 2020-03-20 PDAL-2.1.0-src.tar.gz
(https://github.com/PDAL/PDAL/releases/download/2.1.0/PDAL-2.1.0-src.tar.gz)
Release Notes (https://github.com/PDAL/PDAL/releases/tag/2.1.0) (md5
(https://github.com/PDAL/PDAL/releases/download/2.1.0/PDAL-2.1.0-src.tar.gz.md5))

13

https://github.com/PDAL/PDAL/releases/download/2.1.0/PDAL-2.1.0-src.tar.gz
https://github.com/PDAL/PDAL/releases/tag/2.1.0
https://github.com/PDAL/PDAL/releases/download/2.1.0/PDAL-2.1.0-src.tar.gz.md5

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

3.1.2 Past Releases

* 2019-08-23 PDAL-2.0.1-src.tar.gz
(https://github.com/PDAL/PDAL/releases/download/2.0.1/PDAL-2.0.1-src.tar.gz)

e 2019-05-09 PDAL-1.9.1-src.tar.gz
(https://github.com/PDAL/PDAL/releases/download/1.9.1/PDAL-1.9.1-src.tar.gz)

* 2019-04-09 PDAL-1.9.0-src.tar.gz
(https://github.com/PDAL/PDAL/releases/download/1.9.0/PDAL-1.9.0-src.tar.gz)

e 2018-10-12 PDAL-1.8.0-src.tar.gz
(http://download.osgeo.org/pdal/PDAL-1.8.0-src.tar.gz)

* 2018-05-13 PDAL-1.7.2-src.tar.gz
(http://download.osgeo.org/pdal/PDAL-1.7.2-src.tar.gz)

* 2018-04-06 PDAL-1.7.1-src.tar.gz
(http://download.osgeo.org/pdal/PDAL-1.7.1-src.tar.gz)

3.1.3 Development Source

The main repository for PDAL is located on github at https://github.com/PDAL/PDAL.

You can obtain a copy of the active source code by issuing the following command

git clone https://github.com/PDAL/PDAL.git

3.1.4 Binaries

In this section we list a number of the binary distributions of PDAL. The table below is
intended to provide an overview of some of the differences between the various distributions,
as not all features can be enabled in every distribution. This table only summarizes the
differences between distributions, and there are several plugins that are not built for any of the
distributions. These include Delaunay, GeoWave, MATLAB, MBIO, MRSID,
OpenSceneGraph, RDBLIB, and RiVLib. To enable any of these plugins, the reader will need
to install any required dependencies and build PDAL from source.

14 Chapter 3. Download

https://github.com/PDAL/PDAL/releases/download/2.0.1/PDAL-2.0.1-src.tar.gz
https://github.com/PDAL/PDAL/releases/download/1.9.1/PDAL-1.9.1-src.tar.gz
https://github.com/PDAL/PDAL/releases/download/1.9.0/PDAL-1.9.0-src.tar.gz
http://download.osgeo.org/pdal/PDAL-1.8.0-src.tar.gz
http://download.osgeo.org/pdal/PDAL-1.7.2-src.tar.gz
http://download.osgeo.org/pdal/PDAL-1.7.1-src.tar.gz
https://github.com/PDAL/PDAL

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Table 3.1: PDAL Distribution Feature Comparison

Docker RPMs Debian Alpine Conda

(page 16)

Platform(s) linux linux linux linux win64, mac,
linux

CPD X X

Greyhound X X X X

Icebridge X X X X X

laszip X X X X

laz-perf X X X

NITF X X X

OCI

PCL X X

pgpointcloud | X X X X X

Python X X X X

SQLite X X X X

Windows

Windows builds are available via Conda Forge (https://anaconda.org/conda-forge/pdal) (64-bit
only). See the Conda (page 16) for more detailed information.

RPMs

RPMs for PDAL are available at https://copr.fedorainfracloud.org/coprs/neteler/pdal/.

Debian

Debian packages are now available on Debian Unstable (https://tracker.debian.org/pkg/pdal).

Alpine

Alpine (page 15) is a linux distribution that is compact and frequently used with Docker
images. Alpine packages for PDAL are available at
https://pkgs.alpinelinux.org/packages’name=*pdal*&branch=edge.

Users have a choice of three separate packages.

1. pdal will install the PDAL binaries only, and is suitable for users who will be using the
PDAL command line applications.

3.1. Download 15

https://anaconda.org/conda-forge/pdal
https://copr.fedorainfracloud.org/coprs/neteler/pdal/
https://tracker.debian.org/pkg/pdal
https://pkgs.alpinelinux.org/packages?name=*pdal*&branch=edge

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

2. pdal-dev will install development files which are required for users building their own
software that will link against PDAL.

3. py—-pdal will install the PDAL Python extension.

Note that all of these packages reside in Alpine’s edge/testing repository, which must be
added to your Alpine repositories list. Information on adding and updating repositories can be
found in the Alpine documentation.

To install one or more packages on Alpine, use the following command.

apk add [package...]

For example, the following command will install both the PDAL application and the Python
extension.

apk add py-pdal pdal

Conda

Conda (page 16) can be used on multiple platforms (Windows, macOS, and Linux) to install
software packages and manage environments. Conda packages for PDAL are available at
https://anaconda.org/conda-forge/pdal.

Conda installation instructions can be found on the Conda website. The instructions below
assuming you have a working Conda installation on your system.

Users have a choice of two separate packages.
1. pdal will install the PDAL binaries and development files.
2. python-pdal will install the PDAL Python extension.

To install one or more Conda packages, use the following command.

conda install [-c channel] [package...]

Because the PDAL package (and it’s dependencies) live in the Conda Forge
(https://anaconda.org/conda-forge/pdal) channel, the command to install both the PDAL
application and the Python extension is

conda install -c¢ conda-forge pdal python-pdal gdal

It is strongly recommended that you make use of Conda’s environment management system
and install PDAL in a separate environment (i.e., not the base environment). Instructions can
be found on the Conda website.

16 Chapter 3. Download

https://anaconda.org/conda-forge/pdal
https://anaconda.org/conda-forge/pdal

CHAPTER
FOUR

QUICKSTART

4.1 Quickstart

4.1.1 Introduction

The quickest way to start using PDAL is to leverage builds that were constructed by the PDAL
development team using Conda (https://conda.io/docs/).

Directly from the Conda front page,

Conda is an open source package management system and environment
management system that runs on Windows, macOS and Linux. Conda quickly
installs, runs and updates packages and their dependencies. Conda easily creates,
saves, loads and switches between environments on your local computer.

This exercise will print the first point of an ASPRS LAS (page 69) file. It will utilize the PDAL
command line application (page 25) to inspect the file.

Note: If you need to compile your own copy of PDAL, see Compilation (page 404) for more
details.

4.1.2 Install Conda

Conda installation instructions can be found at the following links. Read through them a bit for
your platform so you have an idea what to expect.

* Windows (https://conda.io/projects/conda/en/latest/user-guide/install/windows.html)
* macOS (https://conda.io/projects/conda/en/latest/user-guide/install/macos.html)

e Linux (https://conda.io/projects/conda/en/latest/user-guide/install/linux.html)

17

https://conda.io/docs/
https://conda.io/projects/conda/en/latest/user-guide/install/windows.html
https://conda.io/projects/conda/en/latest/user-guide/install/macos.html
https://conda.io/projects/conda/en/latest/user-guide/install/linux.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: We will assume you are running on Windows, but the same commands should work in
macOS or Linux too — though definition of file paths might provide a significant difference.

Run Conda

On macOS and Linux, all Conda commands are typed into a terminal window. On Windows,
commands are typed into the Anaconda Prompt window. Instructions can be found in the
Conda Getting Started
(https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#starting-conda)
guide.

Test Installation

To test your installation, simply run the command conda 1ist from your terminal window
or the Anaconda Prompt. A list of installed packages should appear.

Install the PDAL Package

A PDAL package based on the latest release, including all recent patches, is pushed to the
conda-forge (https://anaconda.org/conda-forge/pdal) channel on anaconda.org with every code
change on the PDAL maintenance branch.

Warning: It is a good idea to install PDAL in it’s own environment (or add it to an existing
one). You will NOT want to add it to your default environment named base. Managing
environments is beyond the scope of the quickstart, but you can read more about it here
(https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-envs).

To install the PDAL package so that we can use it to run PDAL commands, we run the
following command to create an environment named myenv, installing PDAL from the
conda-forge channel.

conda create —--yes ——name myenv —-channel conda-forge pdal

Depending on what packages you may or may not have already installed, the output should
look something like:

Solving environment: done

Package Plan

18 Chapter 4. Quickstart

https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#starting-conda
https://anaconda.org/conda-forge/pdal
https://conda.io/projects/conda/en/latest/user-guide/getting-started.html#managing-envs

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

environment location: C:\Miniconda3\envs\myenv

added / updated specs:
- pdal

The following packages will be downloaded:

package \ build

777777777777777777777777777 ‘ e

pdal-1.7.2 \ py35h33£f895e_1 8.6 MB _,
—~conda—-forge

setuptools-39.2.0 \ py35_0 591 KB _,
—~conda—-forge

numpy-1.14.3 \ py35h9fa6c0d3_2 42 KB

Total: 9.2 MB

The following NEW packages will be INSTALLED:

boost: 1.66.0-py35_vcld_ 1 conda—-forge [vcl4]
boost-cpp: 1.66.0-vcld 1 conda-forge [vcl4]
ca-certificates: 2018.4.16-0 conda—-forge

cairo: 1.14.10-vcl4_0 conda-forge [vcl4]
certifi: 2018.4.16-py35_0 conda—-forge

curl: 7.60.0-vcl4_0 conda-forge [vcl4]
expat: 2.2.5-vcld_0 conda-forge [vcl4]
flann: 1.9.1-h0953f56_2 conda—-forge
freexl: 1.0.5-vcl4d4 O conda-forge [vcl4]
geotiff: 1.4.2-vcl4d_1 conda—-forge [vcl4]
hdf4: 4.2.13-vcld 0O conda-forge [vcl4]
hdfb5: 1.10.1-vcl4d_2 conda—forge [vcl4]
hexer: 1.4.0-vcld 1 conda-forge [vcl4]
icc_rt: 2017.0.4-h97af9%66_0

icu: 58.2-vcl4_0 conda-forge [vcl4]
intel-openmp: 2018.0.3-0

Jjpeg: 9b-vcld_2 conda-forge [vcl4]
kealib: 1.4.7-vcld 4 conda-forge [vcl4]
krb5: 1.14.6-vcl4_0 conda—-forge [vcl4]
laszip: 3.2.2-vcld O conda-forge [vcl4]
laz-pertf: 1.2.0-vcl4d_1 conda—-forge [vcl4]
libgdal: 2.2.4-vcld 4 conda-forge [vcl4]
libiconv: 1.15-vcl4_0 conda—forge [vcl4]
libnetcdf: 4.6.1-vcld 2 conda-forge [vcl4]
libpng: 1.6.34-vcl4_0 conda—-forge [vcl4]
libpg: 9.6.3-vcld 0 conda-forge [vcl4]
libspatialite: 4.3.0a-vcl4_19 conda—-forge [vcl4]

4.1. Quickstart

19

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

libssh2: 1.8.0-vcl4d_2 conda—forge [vcl4]
libtiff: 4.0.9-vcld_ 0O conda-forge [vcl4]
libxml2: 2.9.8-vcl4_0 conda-forge [vcl4]
libxslt: 1.1.32-vcl4_0 conda-forge [vcld]
mkl: 2018.0.3-1

mkl fft: 1.0.2-py35_0 conda-forge
mkl_random: 1.0.1-py35_0 conda-forge

nitro: 2.7.dev2-vcl4_0 conda—-forge [vcld]
numpy : 1.14.3-py35h9fa60d3_2

numpy-base: 1.14.3-py35h5c71026_0

openjpeqg: 2.3.0-vcl4_2 conda—-forge [vcl4]
openssl: 1.0.20-vcl4_0 conda—forge [vcld]
pcl: 1.8.1-hd76163c_1 conda-forge

pdal: 1.7.2-py35h33f895e_1 conda-forge

pip: 9.0.3-py35_0 conda-forge
pixman: 0.34.0-vcl4d_2 conda-forge [vcl4]
postgresqgl: 10.3-py35_vcl4d_0 conda-forge [vcld]
projéd: 4.9.3-vcl4d_5 conda—-forge [vcl4]
python: 3.5.5-1 conda-forge
setuptools: 39.2.0-py35_0 conda-forge
sglite: 3.20.1-vcl4_2 conda-forge [vcld]
tiledb: 1.4.1 conda-forge

vC: 14-0 conda—-forge
vs2015 runtime: 14.0.25420-0 conda-forge

wheel: 0.31.0-py35_0 conda-forge
wincertstore: 0.2-py35_0 conda-forge
xerces—c: 3.2.0-vcl4_0 conda-forge [vclé]
XZ: 5.2.3-0 conda-forge

zlib: 1.2.11-vcl4_0 conda-forge [vclé]

Downloading and Extracting Packages

pdal-1.7.2 | 8.6 MB | ###########AFAAAAAAAAAAAAAAAAAAAAAAS
—## | 100%
setuptools-39.2.0 | 591 KB | ########H#AFAFAHFHAHFAFAFAHAHAHAAFAFS
<## | 100%
numpy-1.14.3 \ 42 KB | ######A#AHAHFAAAFAFA A A HAAFAFAAAAAS
—## | 100%

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
To activate this environment, use

S conda activate myenv

To deactivate an active environment, use

HH FHR H FHR R W H

20 Chapter 4. Quickstart

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

S conda deactivate

Note: PDAL’s Python extension is managed separately from the PDAL package. To install it,
replace pdal with python-pdal in any of the commands in this section. Seeing as how
PDAL is a dependency of the Python extension, you will actually get two for the price of one!

To install PDAL to an existing environment names myenv, we would run the following
command.

conda install --name myenv —--channel conda-forge pdal

Finally, to update PDAL to the latest version, run the following.

conda update pdal

4.1.3 Fetch Sample Data

We need some sample data to play with, so we’re going to download the autzen. 1az file.
Inside your terminal (assuming Windows), issue the following command:

explorer.exe https://github.com/PDAL/data/raw/master/autzen/autzen.
—laz

In the download dialog, save the file to your Downloads folder, e.g.,
C:\Users\hobu\Downloads.

4.1.4 Print the first point

To print the first point only, issue the following command (replacing of course hobu with your
user name, or another path altogether, depending on where you saved the file).

pdal info C:\Users\hobu\Downloads\autzen.laz -p O

Here’s a summary of what’s going on with that command invocation
1. pdal: We’re going to run the pdal command.
2. info: We want to run info (page 29) on the data.

3. autzen.laz: The autzen. laz file that we want information from.

Warning 1: Cannot find datum.csv or gdal_datum.csv
Warning 1: Cannot find ellipsoid.csv

4.1. Quickstart 21

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"filename": "C:\\Users\\hobu\\Downloads\\autzen.laz",
"pdal_version": "1.7.2 (git-version: Release)",
"points":
{
"point":
{
"Blue": 93,
"Classification": 1,

"EdgeOfFlightLine": O,
"GpsTime": 245379.3984,
"Green": 102,
"Intensity": 4,
"NumberOfReturns": 1,
"PointId": O,
"PointSourceId": 7326,

"Red": 84,
"ReturnNumber": 1,
"ScanAngleRank": -17,
"ScanDirectionFlag": O,

"UserData": 128,
"X": 637177.98,
"Y": 849393.95,
"Z": 411.19

4.1.5 What’s next?

Visit Applications (page 25) to find out how to utilize PDAL applications to process data
on the command line yourself.

Visit Development (page 393) to learn how to embed and use PDAL in your own
applications.

Readers (page 53) lists the formats that PDAL can read, Filters (page 140) lists the kinds
of operations you can do with PDAL, and Writers (page 107) lists the formats PDAL can
write.

Tutorials (page 267) contains a number of walk-through tutorials for achieving many
tasks with PDAL.

The PDAL workshop (page 301) contains numerous hands-on examples with screenshots
and example data of how to use PDAL Applications (page 25) to tackle point cloud data
processing tasks.

22

Chapter 4. Quickstart

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

* Python (page 257) describes how PDAL embeds and extends Python and how you can
leverage these capabilities in your own programs.

See also:

Community (page 43) is a good source to reach out to when you’re stuck.

4.1. Quickstart 23

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

24

Chapter 4. Quickstart

CHAPTER
FIVE

APPLICATIONS

5.1 Applications

PDAL contains consists of a single application, called pdal. Operations are run by invoking
the pdal application along with a command name:

$ pdal info myfile.las
S pdal translate input.las output.las
$ pdal pipeline —--stdin < pipeline. json

Help for each command can be retrieved via the ——help switch. The -——drivers and
—-—options switches can tell you more about particular drivers and their options:

$ pdal info —--help
S pdal translate —--drivers
S pdal pipeline —-options writers.las

All commands support the following options:

——developer—debug Enable developer debug (don't trap exceptions).
——label A string to use as a process label.
——driver Name of driver to use to override that inferred

—~from file type.

Additional driver-specific options may be specified by using a namespace-prefixed option
name. For example, it is possible to set the LAS day of year at translation time with the
following option:

$ pdal translate \
——writers.las.creation_doy="42" \
input.las \
output.las

25

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: Driver-specific options can be identified using the pdal <command> --help
invocation.

5.1.1 delta

The delta command is used to select a nearest point from a candidate file for each point in
the source file.

$ pdal delta <source> <candidate>

——source source file name

——candidate candidate file name

——detail Output deltas per-point

——alldims Compute diffs for all dimensions (not just X,Y,Z)
Example 1:

$ pdal delta ../../test/data/las/1l.2-with-color.las \
../../test/data/las/1l.2-with-color.las

Delta summary for

source: '../../test/data/las/l.2-with-color.las'
candidate: '../../test/data/las/l.2-with-color.las'
Dimension X Y Z
Min 0.0000 0.0000 0.0000
Max 0.0000 0.0000 0.0000
Mean 0.0000 0.0000 0.0000
Example 2:

$ pdal delta test/data/l.2-with-color.las \
test/data/l.2-with-color.las —-detail
"ID", "Deltax","Delta¥", "Deltaz"

26 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

.00,0.00,0.00
.00,0.00,0.00
.00,0.00,0.00
.00,0.00,0.00
.00,0.00,0.00
.00,0.00,0.00

~

~

~

g b w NP O
~ 0~
O O O O O O

~

5.1.2 density

The density command produces a tessellated hexagonal OGR layer
(http://www.gdal.org/ogr_utilities.html) from the output of filters.hexbin (page 231).

$ pdal density <input> <output>

==idimpuEt, =i Input point cloud file name

——output, -o Output vector data source

——1lyr_name OGR layer name to write into datasource
—--ogrdriver, -f OGR driver name to use

—-—sample_size Sample size for automatic edge length calculation.
- [5000]

——threshold Required cell density [15]

——hole_cull_tolerance_area
Tolerance area to apply to holes before cull
——smooth Smooth boundary output

5.1.3 ground

The ground command is used to segment the input point cloud into ground versus
non-ground returns using filters.smrf (page 185) and filters.outlier (page 174).

$ pdal ground [options] <input> <output>

—-—input, -1i Input filename

——output, -o Output filename

——max_window_size Max window size

==slepe Slope

——max_distance Max distance

——initial_distance 1Initial distance

——cell size Cell size

—-—extract Extract ground returns?

——reset Reset classifications prior to segmenting?
——denoise Apply statistical outlier removal prior to,
—segmenting?

5.1. Applications 27

http://www.gdal.org/ogr_utilities.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

——returns Include last returns?

—-—-scalar Elevation scalar?

——threshold Elevation threshold?

——cut Cut net size?

——ignore A range query to ignore when processing

5.1.4 hausdorff

The hausdorff command is used to compute the Hausdorff distance between two point
clouds. In this context, the Hausdorff distance is the greatest of all Euclidean distances from a
point in one point cloud to the closest point in the other point cloud.

More formally, for two non-empty subsets X and Y, the Hausdorff distance dy (X,Y) is

dy(X,Y) = inf d(z,y), sup inf d(z,
n(X,Y) max{ig};;gy (z,y) sup inf (z,9)}

where sup and inf are the supremum and infimum respectively.

$ pdal hausdorff <source> <candidate>

—-—source arg Non-positional option for specifying filename of |
—source file.

——candidate arg Non-positional option for specifying filename to_
—~test against source.

The algorithm makes no distinction between source and candidate files (i.e., they can be
transposed with no affect on the computed distance).

The command returns 0 along with a JSON-formatted message summarizing the PDAL
version, source and candidate filenames, and the Hausdorff distance. Identical point clouds will
return a Hausdorff distance of 0.

$ pdal hausdorff source.las candidate.las
{
"filenames":
[
"\ /path\/to\/source.las",
"\/path\/to\/candidate.las"
1,
"hausdorff": 1.30364872¢,
"pdal_version": "1.3.0 (git-version: 191301)"

Note: The hausdorff is computed for XYZ coordinates only and as such says nothing

28 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

about differences in other dimensions or metadata.

5.1.5 info

Displays information about a point cloud file, such as:

* basic properties (extents, number of points, point format)

* coordinate reference system

¢ additional metadata

* summary statistics about the points

* the plain text format should be reStructured text if possible to allow a user to retransform
the output into whatever they want with ease

$ pdal info <input>

—-—input, -1

Input file name

-—all Dump statistics, schema and metadata

—-—point, -p Point to dump --point="1-5,10,100-200" (O_

—indexed)

——query Return points in order of distance from the
specified location (2D or 3D) —-query Xcoord,Ycoord[, Zcoord] [/

—count]

—-—stats Dump stats on all points (reads entire,

—~dataset)

——boundary Compute a hexagonal hull/boundary of_,

—~dataset

——dimensions Dimensions on which to compute statistics

——enumerate Dimensions whose values should be

—enumerated

——schema Dump the schema

——pipeline-serialization
——summary

——metadata

—-—stdin, -s

Output filename for pipeline serialization
Dump summary of the info

Dump file metadata info

Read a pipeline file from standard input

If no options are provided, ——stats is assumed.

Example 1:

$ pdal info test/data/las/l.2-with-color.las \

——query="636601.87,

849018.59, 425.10"

5.1. Applications

29

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"O":

{

by

"Blue": 134,
"Classssification": 1,
"EdgeOfFlightLine": O,
"GpsTime": 245383.38808001476,
"Green": 104,

"Intensity": 124,
"NumberOfReturns": 1,
"PointSourceId": 7326,

"Red": 134,
"ReturnNumber": 1,
"ScanAngleRank": -4,
"ScanDirectionFlag": 1,

"UserData": 126,
"X": 636601.87,
"Y": 849018.59999999998,
"z": 425.10000000000002

"

{
"Blue": 134,
"Classification": 2,
"EdgeOfFlightLine": 0,
"GpsTime": 246099.17323102333,
"Green": 106,
"Intensity": 153,
"NumberOfReturns": 1,
"PointSourceId": 7327,
"Red": 143,
"ReturnNumber": 1,
"ScanAngleRank": -10,
"ScanDirectionFlag": 1,
"UserData": 126,
"X": 636606.76000000001,
"y": 849053.94000000006,
"Z": 425.88999999999999

}y

Example 2:

$ pdal info test/data/l.2-with-color.las -p 0-10

{

30

Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"filename": "../../test/data/las/l.2-with-color.las",
"pdal_version": "PDAL 1.0.0.bl (1ll16d7d) with GeoTIFF 1.4.1 GDAL 1.
—~11.2 LASzip 2.2.0",
"points":
{
"point":
[
{
"Blue": 88,
"Classification": 1,

"EdgeOfFlightLine": O,
"GpsTime": 245380.78254962614,
"Green": 77,

"Intensity": 143,
"NumberOfReturns": 1,
"PointId": O,

"PointSourcelId": 7326,

"Red": 68,
"ReturnNumber": 1,
"ScanAngleRank": -9,
"ScanDirectionFlag": 1,

"UserData": 132,

"X": 637012.23999999999,
"y": 849028.31000000006,
"z": 431.66000000000003

"Blue": 68,

"Classification": 1,
"EdgeOfFlightLine": O,
"GpsTime": 245381.45279923646,
"Green": 66,

"Intensity": 18,
"NumberOfReturns": 2,
"PointId": 1,

"PointSourceId": 7326,

"Red": 54,
"ReturnNumber": 1,
"ScanAngleRank": -11,
"ScanDirectionFlag": 1,

"UserData": 128,

"X": 636896.3299999999¢,

"y": 849087.70000000007,

"Z": 446.38999999999999
}I

5.1. Applications 31

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

5.1.6 merge

The merge command will combine input files into a single output file.

$ pdal merge <input> ... <output>
—-—files, -f List of filenames. The last file listed is taken to
—be

the output file.

This command provides simple merging of files. It provides no facility for filtering,
reprojection, etc. The file type of the input files may be different from one another and
different from that of the output file.

5.1.7 pipeline

The pipeline command is used to execute Pipeline (page 45) JISON. By default the pipeline
is run in stream mode if possible, otherwise in standard mode. See Reading with PDAL
(page 267) or Pipeline (page 45) for more information.

$ pdal pipeline <input>

—-—input, -i Input filename

——pipeline-serialization Output file for pipeline serialization

—-—-validate Validate but do not process the pipeline.
Also reports whether a pipeline can be streamed.

——progress Name of file or FIFO to which stages,,

—should write

progress information. The file/FIFO must exist. PDAL will not
—create the

progress file.

—-—-stdin, -s Read pipeline from standard input
——metadata Metadata filename

——stream Run in stream mode. If not possible, exit.
——nostream Run in standard mode.

Substitutions

The pipeline command can accept command-line option substitutions and they replace
existing options that are specified in the input JSON pipeline. For example, to set the output
and input LAS files for a pipeline that does a translation, the £i1lename for the reader and the
writer can be overridden:

32 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

$ pdal pipeline translate.json —-writers.las.filename=output.laz \
—-readers.las.filename=input.las

If multiple stages of the same name exist in the pipeline, all stages would be overridden. In the
following example, both colorization filters would have their dimensions option overridden to
the value “Red:1:1.0, Blue, Green::256.0” by the command shown below:

{
"pipeline" : [
"input.las",

{

"type" : "filters.colorization",
"raster" : "rasterl.tiff"
"dimensions": "Red"

Yo

{
"type" : "filters.colorization",
"raster" : "raster2.tiff"
"dimensions": "Blue"

by
"placeholder.laz"

$ pdal pipeline colorize.]json ——-filters.colorization.dimensions= \
"Red:1:1.0, Blue, Green::256.0"

Option substitution can also refer to the tag of an individual stage. This can be done by using
the syntax —stage.<tagname>.<option>. This allows options to be set on individual stages, even
if there are multiple stages of the same type. For example, if a pipeline contained two LAS
readers with tags 1as1 and 1as?2 respectively, the following command would allow
assignment of different filenames to each stage:

{

"pipeline" : [
{
"tag" : "lasl",
"type" : "readers.las"
bo
{
"tag" : "las2",
"type" : "readers.las"

by
"placeholder.laz"

5.1. Applications 33

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

$ pdal pipeline translate.]json —--writers.las.filename=output.laz \
——-stage.lasl.filename=filel.las —--stage.las2.filename=file2.las

Options specified by tag names override options specified by stage types.

5.1.8 random

The random command is used to create a random point cloud. It uses readers.faux (page 59)
to create a point cloud containing count points drawn randomly from either a uniform or
normal distribution. For the uniform distribution, the bounds can be specified (they default to a
unit cube). For the normal distribution, the mean and standard deviation can both be set for
each of the x, y, and z dimensions.

$ pdal random <output>

—-—output, -o Output file name
——compress, -z Compress output data (if supported by output,
—~format)
—-—count How many points should we write?
——bounds Extent (in XYZ to clip output to)
——mean A comma-separated or quoted, space-separated list
—~of means

(normal mode): —-mean 0.0,0.0,0.0 ——mean "0.0 0.0 0.0"
——stdev A comma-separated or quoted, space-separated list
—of

standard deviations (normal mode): —--stdev 0.0,0.0,0.0 —--stdev
~"0.0 0.0 0.0"
——distribution Distribution (uniform / normal)
5.1.9 sort

The sort command uses filters.mortonorder (page 188) to sort data by XY values.

$ pdal sort <input> <output>

—-—input, -1i Input filename

==@uIitput, =© Output filename

——compress, -~z Compress output data (if supported by output,
—~format)

——metadata, —m Forward metadata (VLRs, header entries, etc) from

—previous stages

34 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

5.1.10 split

The split command will create multiple output files from a single input file. The command
takes an input file name and an output filename (used as a template) or output directory
specification.

$ pdal split <input> <output>

==ilmput, =i Input filename

——output, -o Output filename

——length Edge length for splitter cells
——capacity Point capacity of chipper cells
——origin_x Origin in X axis for splitter cells
—-—origin_y Origin in Y axis for splitter cells

If neither the ——1ength nor ——capacity arguments are specified, an implcit argument of
capacity with a value of 100000 is added.

The output argument is a template. If the output argument is, for example, file.ext, the
output files created are £ile_#.ext where # is a number starting at one and incrementing
for each file created.

If the output argument ends in a path separator, it is assumed to be a directory and the input
argument is appended to create the output template. The split command never creates
directories. Directories must pre-exist.

Example 1:

$ pdal split —--capacity 100000 infile.laz outfile.bpf

This command takes the points from the input file infile.laz and creates output files
outfile_1.bpf,outfile_2.bpf, ... where each output file contains no more than
100000 points.

5.1.11 tile

The t i1le command will create multiple output files from input files by generating square tiles
of points. The command takes an input file name and an output filename template.

This command is similar to the split (page 35) command, but differs in several ways. The
tile command:

* Uses streaming mode to limit the amount of memory consumed by point data.

* Uses a placeholder for filename output.

5.1. Applications 35

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

* Provides for reprojection of data to create consistent output.

* Always creates square tiles that contain all points “covered” by each tile.

$ pdal tile <input> <output>

==impuit, =i Input filename

—-—output, -o Output filename

——length Edge length for cells [Default: 1000]

—-—origin_x Origin in X axis for cells [Default: None]

——origin_y Origin in Y axis for cells [Default: None]

——buffer Size of buffer (overlap) to include around each tile.
[Default: 0]

——out_srs Spatial reference system to which all input points

will be reprojected. [Default: None]

The input filename can contain a glob pattern
(https://en.wikipedia.org/wiki/Glob_%?28programming%?29) to allow multiple files as input.

The output filename must contain a placeholder character #. The placeholder character is
replaced with an X/Y index of the tile as a part of a cartesian system. For example, if the
output filename is specified as out# . 1as, the tile containing the origin will be named
out0_0.las. Thetile to its right will be named out1_0. las. The tile above it will be
named out0_1.las. The command does not create directories — create any desired
directories before running.

If an origin is not supplied with as argument, the first point read is used as the origin.

Example 1:

S pdal tile infile.laz "outfile_#.bpf"
This command takes the points from the input file infile. laz and creates output files
outfile_0_0.bpf,outfile_0_1.bpf,... where each output file contains points in the

1000x1000 square units represented by the tile. The X/Y location of the first point is used as
the origin of the tile grid.

Example 2:

$ pdal tile "/home/me/files/*" "out_#.txt" ——out_srs="EPSG:4326"

Reads all files in the directory /home/me/files as input and reprojects points to geographic
coordinates if necessary. The output is written to a set of text files in the current directory.

36 Chapter 5. Applications

https://en.wikipedia.org/wiki/Glob_%28programming%29

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

5.1.12 tindex

The t index command is used to create a GDAL (http://www.gdal.org)-style tile index for
PDAL-readable point cloud types (see gdaltindex (http://www.gdal.org/gdaltindex.html)).

The t index command has two modes. The first mode creates a spatial index file for a set of
point cloud files. The second mode creates a point cloud file that is the result of merging the
points from files referred to in a spatial index file that meet some criteria (usually a geographic
region filter).

tindex Creation Mode

S pdal tindex create <tindex> <filespec>

——tindex OGR-readable/writeable tile index output
—-—filespec Build: Pattern of files to index. Merge: |,
—Output filename

—-—fast_boundary Use extent instead of exact boundary
——lyr_name OGR layer name to write into datasource
——tindex_name Tile index column name

-—-ogrdriver, -f OGR driver name to use

——t_srs Target SRS of tile index

——a_srs Assign SRS of tile with no SRS to this value
——write_absolute_path Write absolute rather than relative file paths
—-—stdin, -s Read filespec pattern from standard input

This command will index the files referred to by £ilespec and place the result in t index.
The t index is a vector file or database that will be created by pdal as necessary to store the
file index. The type of the index file can be specified by specifying the OGR code for the
format using the ——ogrdriver option. If no driver is specified, the format defaults to “ESRI
Shapefile”. Any filetype that can be handled by OGR (http://www.gdal.org/ogr_formats.html)
is acceptable.

In vector file-speak, each file specified by filespec is stored as a feature in a layer in the
index file. The filespec is a glob pattern
(http://man7.org/linux/man-pages/man7/glob.7.html). and normally needs to be quoted to
prevent shell expansion of wildcard characters.

tindex Merge Mode

$ pdal tindex merge <tindex> <filespec>

This command will read the existing index file t index and merge the points in the indexed
files that pass any filter that might be specified, writing the output to the point cloud file

5.1. Applications 37

http://www.gdal.org
http://www.gdal.org/gdaltindex.html
http://www.gdal.org/ogr_formats.html
http://man7.org/linux/man-pages/man7/glob.7.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

specified in £ilespec. The type of the output file is determined automatically from the
filename extension.

——tindex OGR-readable/writeable tile index output
—-—filespec Build: Pattern of files to index. Merge: Output,,
—~filename

——1lyr_name OGR layer name to write into datasource
——tindex_name Tile index column name

—-—-ogrdriver, —-f OGR driver name to use

——bounds Extent (in XYZ) to clip output to

——polygon Well-known text of polygon to clip output
——t_srs Spatial reference of the clipping geometry.
Example 1:

Find all LAS files via £ind, send that file list via STDIN to pdal tindex, and write a
SQLite tile index file with a layer named pdal:

$ find las/ —-iname "*.las" | pdal tindex create index.sglite -f

—"SQLite" \
——-stdin —--lyr_name pdal

Example 2:

Glob a list of LAS files, output the SRS for the index entries to EPSG:4326, and write out an
SQLite (http://www.sqlite.org) file.

$ pdal tindex create index.sqglite "x.las" —-f "SQLite" —--lyr_name
c—>"pdal" \
——t_srs "EPSG:4326"

5.1.13 translate

The t ranslate command can be used for simple conversion of files based on their file
extensions. It can also be used for constructing pipelines directly from the command-line. By
default, processing is done in stream mode if possible, standard mode if not.

$ pdal translate [options] input output [filter]

——input, -i Input filename

——output, -o Output filename

——filter, —-f Filter type

——Jjson PDAL pipeline from which to extract filters.

38 Chapter 5. Applications

http://www.sqlite.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

-—pipeline, -p Pipeline output

--metadata, -m Dump metadata output to the specified file
—-—-reader, -r Reader type

——writer, -w Writer type

——stream Run in stream mode. If not possible, exit.
——nostream Run in standard mode.

The ——input and —-output file names are required options.

If provided, the ——pipeline option will write the pipeline constructed from the
command-line arguments to the specified file. The translate command will not actually run
when this argument is given.

The ——json flag can use used to specify a PDAL pipeline from which filters will be extracted.
If a reader or writer exist in the pipeline, they will be removed and replaced with the input and
output provided on the command line. If a reader/writer stage references tags in the provided
pipeline, the overriding files will assume those tags. If the argument to the ——json option
references an existing file, it is assumed that the file contains the pipeline to be processed. If
the argument value is not a filename, it is taken to be a literal JSON string that is the pipeline.
The flag can’t be used if filters are listed on the command line or explicitly with the
—-—filter option.

The ——filter flagis optional. It is used to specify drivers used to filter the data. ——filter
accepts multiple arguments if provided, thus constructing a multi-stage filtering operation.
Filters can’t be specified using this method and with the ——json flag.

The ——-metadata flag accepts a filename for the output of metadata associated with the
execution of the translate operation.

If no ——reader or ——writer type are given, PDAL will attempt to infer the correct drivers
from the input and output file name extensions respectively.

Example 1:

The translate command can be augmented by specifying fully specified options at the
command-line invocation. For example, the following invocation will translate
1.2-with-color.las to output.laz while doing the following:

 Setting the creation day of year to 42
* Setting the creation year to 2014
* Setting the LAS point format to 1

* Cropping the file with the given polygon

$ pdal translate \
—--writers.las.creation_doy="42" \

5.1. Applications 39

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

——writers.las.creation_year="2014" \

—-—writers.las.format="1" \

——filters.crop.polygon="POLYGON ((636889.412951239268295 851528.
—+512293258565478 422.7001953125,636899.14233423944097 851475.
—~000686757150106 422.4697265625,636899.14233423944097 851475.
—000686757150106 422.4697265625,636928.33048324030824 851494.
—459452757611871 422.5400390625,636928.33048324030824 851494.
—459452757611871 422.5400390625,636928.33048324030824 851494.
—459452757611871 422.5400390625,636976.977398241520859 851513.
—918218758190051 424.150390625,636976.977398241520859 851513.
—918218758190051 424.150390625,637069.406536744092591 851475.
—~000686757150106 438.7099609375,637132.647526245797053 851445.
—+812537756282836 425.9501953125,637132.647526245797053 851445.
—812537756282836 425.9501953125,637336.964569251285866 851411.
—759697255445644 425.8203125,637336.964569251285866 851411.
—759697255445644 425.8203125,637473.175931254867464 851158.
—795739248627797 435.6298828125,637589.928527257987298 850711.
—244121236610226 420.509765625,637244.535430748714134 850511.
—791769731207751 420.7998046875,636758.066280735656619 850667.
—461897735483944 434.609375,636539.155163229792379 851056.
—63721774588339 422.6396484375,636889.412951239268295 851528.
+512293258565478 422.7001953125))" \

./test/data/l.2-with-color.las \

output.laz \

filters.crop

Example 2:

Given these tools, we can now construct a custom pipeline on-the-fly. The example below uses
a simple LAS reader and writer, but stages a voxel grid filter, followed by the SMREF filter and
arange filter. We can even set stage-specific parameters as shown.

$ pdal translate input.las output.las voxelcenternearestneighbor,
—smrf range \
——filters.range.limits="Classification[2:2]"

Example 3:
This command reads the input text file “myfile” and writes an output LAS file “output.las”,

processing the data through the stats filter. The metadata output (including the output from the
stats filter) is written to the file “meta.json”.

40 Chapter 5. Applications

PDAL: Point cloud Data Abstraction Library, Release 2.1

.0

$ pdal translate myfile output.las —-—-metadata=meta.json -r readers.

~text \
——json="{ \"pipeline\": [{ \"type\":\"filters.stats\" }] }"

Example 4:

This command reprojects the points in the file “input.las” to another spatial reference system
and writes the result to the file “output.las”.

$ pdal translate input.las output.las —-f filters.reprojection \
——filters.reprojection.out_srs="EPSG:4326"

5.1. Applications

41

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

42 Chapter 5. Applications

CHAPTER
SIX

COMMUNITY

6.1 Community

PDAL’s community interacts through Mailing List (page 43), GitHub (page 43), Gitter
(https://gitter.im/PDAL/PDAL) and /RC (page 44). Please feel welcome to ask questions and
participate in all of the venues. The Mailing List (page 43) communication channel is for
general questions, development discussion, and feedback. The GitHub (page 43)
communication channel is for development activities, bug reports, and testing. The /RC
(page 44) and Gitter (https://gitter.im/PDAL/PDAL) channels are for real-time chat activities
such as meetings and interactive debugging sessions.

6.1.1 Mailing List

Developers and users of PDAL participate on the PDAL mailing list. It is OK to ask questions
about how to use PDAL, how to integrate PDAL into your own software, and report issues that
you might have.

http://lists.osgeo.org/mailman/listinfo/pdal

Note: Please remember that an email to the PDAL list is going to 100s of individuals. Do
your diligence the best you can on your question before asking, but don’t be afraid to ask. We
won’t bite. Promise.

6.1.2 GitHub

Visit http://github.com/PDAL/PDAL to file issues you might be having with the software.
GitHub is also where you can obtain a current development version of the software in the git
(https://en.wikipedia.org/wiki/Git_(software)) revision control system. The PDAL project is
eager to take contributions in all forms, and we welcome those who are willing to roll up their
sleeves and start filing tickets, pushing code, generating builds, and answering questions.

43

https://gitter.im/PDAL/PDAL
https://gitter.im/PDAL/PDAL
http://lists.osgeo.org/mailman/listinfo/pdal
http://github.com/PDAL/PDAL
https://en.wikipedia.org/wiki/Git_(software)

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

See also:

Development (page 393) provides more information on how the PDAL software development
activities operate.

6.1.3 Gitter

Some PDAL developers are active on Gitter (https://gitterim/PDAL/PDAL) and you can use
that mechanism for asking questions and interacting with the developers in a mode that is
similar to /RC (page 44). Gitter uses your GitHub (page 43) credentials for access, so you will
need an account to get started.

6.1.4 Keybase

Some PDAL developers are available via Keybase’s pdal chat. See
https://keybase.io/blog/keybase-chat for more details.

6.1.5 IRC

You can find some PDAL developers on IRC on #pdal at Freenode (http://freenode.net). This
mechanism is usually reserved for active meetings and other outreach with the community. The
Mailing List (page 43) and GitHub (page 43) avenues are going to be more productive
communication channels in most situations.

44 Chapter 6. Community

https://gitter.im/PDAL/PDAL
https://keybase.io/blog/keybase-chat
http://freenode.net

CHAPTER
SEVEN

DRIVERS

7.1 Pipeline

Pipelines define the processing of data within PDAL. They describe how point cloud data are
read, processed and written. PDAL internally constructs a pipeline to perform data translation
operations using translate (page 38), for example. While specific applications (page 25) are
useful in many contexts, a pipeline provides useful advantages for many workflows:

1. You have a record of the operation(s) applied to the data

2. You can construct a skeleton of an operation and substitute specific options (filenames,
for example)

3. You can construct complex operations using the JSON (http://www.json.org/)
manipulation facilities of whatever language you want.

Note: pipeline (page 32) is used to invoke pipeline operations via the command line.

7.1.1 Introduction

A PDAL processing pipeline is represented in JSON. The structure may either:

* a JSON object, with a key called pipeline whose value is an array of inferred or
explicit PDAL Stage Objects (page 49) representations.

* a JSON array, being the array described above without being encapsulated by a JSON
object.

Simple Example

A simple PDAL pipeline, inferring the appropriate drivers for the reader and writer from
filenames, and able to be specified as a set of sequential steps:

45

http://www.json.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"input.las",

{
"type":"filters.crop",
"bounds":" ([0,100], [0,100])"

by
"output .bpf"

l readers.las I——>| filters.crop H writers.bpf l

Fig. 7.1: A simple pipeline to convert LAS (page 69) to BPF (page 54) while only keeping points
inside the box [0 < x < 100,0 < y < 100].
Reprojection Example

A more complex PDAL pipeline reprojects the stage tagged A1, merges the result with B, and
writes the merged output to a GeoTIFF file with the writers.gdal (page 112) writer:

[

"filename":"A.las",
"spatialreference":"EPSG:26916"

"type":"filters.reprojection",
"in srs":"EPSG:26916",
"out_srs":"EPSG:4326",

"tag" . "AZ n

"filename":"B.las",
"tag" : "B"

"type":"filters.merge",
"tag":"merged",
"inputs": [

"A2",

"B"

by

46 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"writers.gdal",
"filename":"output.tif"

readers.las
B.las Ty
writers.gdal
filters.reprojection output. it
~,
f readers.las : EPSG:26916
A as EPSG:4326

Fig. 7.2: A more complex pipeline that merges two inputs together but uses fil-
ters.reprojection (page 197) to transform the coordinate system of file B.las
from UTM (http://spatialreference.org/ref/epsg/nad83-utm-zone-16n/) to Geographic
(http://spatialreference.org/ret/epsg/4326/).

Point Views and Multiple Outputs

Some filters produce sets of points as output. filters.splitter (page 227), for example, creates a
point set for each tile (rectangular area) in which input points exist. Each of these output sets is
called a point view. Point views are carried through a PDAL pipeline individually. Some
writers can produce separate output for each input point view. These writers use a placeholder
character (#) in the output filename which is replaced by an incrementing integer for each input
point view.

The following pipeline provides an example of writing multiple output files from a single
pipeline. The crop filter creates two output point views (one for each specified geometry) and
the writer creates output files ‘outputl.las’ and ‘output2.las’ containing the two sets of points:

[
"input.las",
{
"type" : "filters.crop",
"bounds" : [" ([0, 75], [0, 75])", "([50, 125], [50, 125])"]
}o
"output#.las"

7.1. Pipeline 47

http://spatialreference.org/ref/epsg/nad83-utm-zone-16n/
http://spatialreference.org/ref/epsg/4326/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

7.1.2 Processing Modes

PDAL process data in one of two ways: standard mode or stream mode. With standard mode,
all input is read into memory before it is processed. Many algorithms require standard mode
processing because they need access to all points. Operations that do sorting or require
neighbors of points, for example, require access to all points.

For operations that don’t require access to all points, PDAL provides stream mode. Stream
mode processes points through a pipeline in chunks, which reduces memory requirements.

When using pdal translate (page 38) or pdal pipeline (page 32) PDAL uses stream mode if
possible. If stream mode can’t be used the applications fall back to standard mode processing.
Streamable stages are tagged in the stage documentation with a blue bar. Users can explicitly
choose to use standard mode by using the ——nostream option. Users of the PDAL API can
explicitly control the selection of the PDAL processing mode.

7.1.3 Pipelines

Pipeline Array

PDAL JSON pipelines are an array of stages.

Note: In versions of PDAL prior to 1.9, the array of stages needed to be the value of a key
named “pipeline” which was encapsulated in an object. The earlier format is still accepted for
backward compatibility.

Old format:

{
"pipeline"
[
"inputfile",
"outputfile"

}

Equivalent new format:

[
"inputfile",
"outputfile"

* The pipeline array may have any number of string or Stage Objects (page 49) elements.

48 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

* String elements shall be interpreted as filenames. PDAL will attempt to infer the proper
driver from the file extension and position in the array. A writer stage will only be
created if the string is the final element in the array.

Stage Objects

For more on PDAL stages and their options, check the PDAL documentation on Readers
(page 53), Writers (page 107), and Filters (page 140).

* A stage object may have a member with the name t ag whose value is a string. The
purpose of the tag is to cross-reference this stage within other stages. Each t ag must be
unique.

* A stage object may have a member with the name inputs whose value is an array of
strings. Each element in the array is the tag of another stage to be set as input to the
current stage.

* Reader stages will disregard the inputs member.

* If inputs is not specified for the first non-reader stage, all reader stages leading up to
the current stage will be used as inputs.

* If inputs is not specified for any subsequent non-reader stages, the previous stage in
the array will be used as input.

* A tag mentioned in another stage’s 1nput s must have been previously defined in the
pipeline array.
* A reader or writer stage object may have a member with the name t ype whose value is

a string. The t ype must specify a valid PDAL reader or writer name.

* A filter stage object must have a member with the name t ype whose value is a string.
The t ype must specify a valid PDAL filter name.

* A stage object may have additional members with names corresponding to stage-specific
option names and their respective values. Values provided as JSON objects or arrays will
be stringified and parsed within the stage. Some options allow multiple inputs. In those
cases, provide the option values as a JSON array.

* A user_data option can be added to any stage object and it will be carried through to
any serialized pipeline output.

» All stages support the opt ion_file option that allows options to be places in a
separate file. See Option Files (page 50) for details.

Filename Globbing

* A filename may contain the wildcard character x to match any string of characters. This
can be useful if working with multiple input files in a directory (e.g., merging all files).

7.1. Pipeline 49

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Filename globbing ONLY works in pipeline file specifications. It doesn’t work when a
filename is provided as an option through a command-line application like pdal
pipeline orpdal translate.

Option Files

All stages accept the option file option that allows extra options for a stage to be placed
in a separate file. The value of the option is the filename in which the additional options are
located.

Option files can be written using either JSON syntax or command line syntax. When using the
JSON syntax, the format is a block of options just as if the options were placed in a pipeline:

{
"minor_ version": 4,
"out_srs": "EPSG_4326"
}

When using the command line syntax, the options are specified as they would be on the
command line without the need to qualify the option names with the stage name:

——minor version=4 ——-out_ srs="EPSG 4326"

7.1.4 Extended Examples

BPF to LAS

The following pipeline converts the input file from BPF (page 54) to LAS (page 117), inferring
both the reader and writer type, and setting a number of options on the writer stage.

[

"utml5.bpf",

{
"filename":"out2.las",
"scale_x":0.01,
"offset_x":311898.23,
"scale y":0.01,
"offset_y":4703909.84,
"scale z":0.01,
"offset _z":7.385474

50 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Python HAG

In our next example, the reader and writer types are once again inferred. After reading the input
file, the ferry filter is used to copy the Z dimension into a new height above ground (HAG)
dimension. Next, the filters.python (page 242) is used with a Python script to compute height
above ground values by comparing the Z values to a surface model. These height above ground
values are then written back into the Z dimension for further analysis. See the Python code at
hag.py (https://raw.githubusercontent.com/PDAL/PDAL/master/test/data/autzen/hag.py.in).

See also:

filters.hag describes using a specific filter to do this job in more detail.

[

"autzen.las",

{
"type":"filters.ferry",
"dimensions":"7Z=>HAG"

Hy

"type":"filters.python",
"script":"hag.py",
"function":"filter",
"module":"anything"

by

"autzen-hag.las"

DTM

A common task is to create a digital terrain model (DTM) from the input point cloud. This
pipeline infers the reader type, applies an approximate ground segmentation filter using
filters.smrf (page 185), filters out all points but the ground returns (classification value of 2)
using the filters.range (page 214), and then creates the DTM using the writers.gdal (page 112).

[

"autzen—-full.las",

{
"type":"filters.smrf",
"window":33,
"slope":1.0,
"threshold":0.15,
"cell":1.0

"type":"filters.range",

7.1. Pipeline 51

https://raw.githubusercontent.com/PDAL/PDAL/master/test/data/autzen/hag.py.in

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"limits":"Classification[2:2]"

"type":"writers.gdal",
"filename":"autzen—-surface.tif",
"output_type":"min",
"gdaldriver":"GTiff",
"window_size":3,
"resolution":1.0

Decimate & Colorize

This example still infers the reader and writer types while applying options on both. The
pipeline decimates the input LAS file by keeping every other point, and then colorizes the
points using the provided raster image. The output is written as ASCII text.

[

"filename":"1l.2-with-color.las",
"spatialreference":"EPSG:2993"

"type":"filters.decimation",
"step":2,
"offset":1
by
{
"type":"filters.colorization",
"raster":"autzen.tif",
"dimensions": ["Red:1:1", "Green:2:1", "Blue:3:1"]

"filename":" junk.txt",
"delimiter":", ",
"write_header":false

Reproject

Our first example with multiple readers, this pipeline infers the reader types, and assigns
spatial reference information to each. filters.reprojection (page 197) filter reprojects data to the

52 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

specified output spatial reference system.
[

"filename":"1.2-with-color.las",
"spatialreference":"EPSG:2027"

"filename":"1l.2-with-color.las",
"spatialreference":"EPSG:2027"

"type":"filters.reprojection",
"out_srs":"EPSG:2028"

Globbed Inputs

Finally, we capture another merge pipeline demonstrating the ability to glob multiple input
LAS files from a given directory.

[
"/path/to/data/*.las",
"output.las"

]

See also:

The PDAL source tree contains a number of example pipelines that are used for testing. You
might find these inspiring. Go to https://github.com/PDAL/PDAL/tree/master/test/data/pipeline
to find more.

Note: Issuing the command pdal info --options will list all available stages and their
options. See info (page 29) for more.

7.2 Readers

Readers provide Dimensions (page 251) to Pipeline (page 45). PDAL attempts to normalize
common dimension types, like X, Y, Z, or Intensity, which are often found in LiDAR point

clouds. Not all dimension types need to be fixed, however. Database drivers typically return
unstructured lists of dimensions. A reader might provide a simple file type, like readers.text

7.2. Readers 53

https://github.com/PDAL/PDAL/tree/master/test/data/pipeline

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(page 100), a complex database like readers.oci (page 81), or a network service like

readers.ept (page 55).

7.2.1 readers.bpf

BPF is an NGA specification

(https://nsgreg.nga.mil/doc/view ?i=4220&month=8&day=30&year=2016) for point cloud
data. The BPF reader supports reading from BPF files that are encoded as version 1, 2 or 3.

This BPF reader only supports Zlib compression. It does NOT support the deprecated
compression types QuickLLZ and FastLZ. The reader will consume files containing ULEM
frame data and polarimetric data, although these data are not made accessible to PDAL; they

are essentially ignored.

Data that follows the standard header but precedes point data is taken to be metadata and is

UTF-encoded and added to the reader’s metadata.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

"inputfile.bpf",

{
"type":"writers.text",
"filename":"outputfile.txt"

}

Options

filename BPF file to read [Required]

count Maximum number of points to read. [Default: unlimited]

54

Chapter 7. Drivers

https://nsgreg.nga.mil/doc/view?i=4220&month=8&day=30&year=2016

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

7.2.2 readers.buffer

The readers.buffer (page 55) stage is a special stage that allows you to read data from your own
PointView rather than fetching the data from a specific reader. In the Writing with PDAL
(page 416) example, it is used to take a simple listing of points and turn them into an LAS file.

Default Embedded Stage
This stage is enabled by default

Example

See Writing with PDAL (page 416) for an example usage scenario for readers.buffer (page 55).

Options

count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

7.2.3 readers.ept

Entwine Point Tile (https://entwine.io/entwine-point-tile.html) (EPT) is a hierarchical
octree-based point cloud format suitable for real-time rendering and lossless archival. Entwine
(https://entwine.io/) is a producer of this format. The EPT Reader supports reading data from
the EPT format, including spatially accelerated queries and file reconstruction queries.

Sample EPT datasets of hundreds of billions of points in size may be viewed with Potree
(http://potree.entwine.io/data/nyc.html) or Plasio

(http://speck.ly/?s=http%3 A%2F%2Fc%S5B0-
7%5D.greyhound.io&r=ept%3A%2F%?2Fna.entwine.i0%2Fnyc&ca=-0&ce=49.06&ct=-
8239196%2C4958509.308%2C337&cd=42640.943&cmd=125978.13&ps=2&pa=0.1&ze=1&cOs=remote % 3.

Default Embedded Stage
This stage is enabled by default

7.2. Readers 55

https://entwine.io/entwine-point-tile.html
https://entwine.io/
http://potree.entwine.io/data/nyc.html
http://speck.ly/?s=http%3A%2F%2Fc%5B0-7%5D.greyhound.io&r=ept%3A%2F%2Fna.entwine.io%2Fnyc&ca=-0&ce=49.06&ct=-8239196%2C4958509.308%2C337&cd=42640.943&cmd=125978.13&ps=2&pa=0.1&ze=1&c0s=remote%3A%2F%2Fimagery%3Furl%3Dhttp%3A%2F%2Fserver.arcgisonline.com%2FArcGIS%2Frest%2Fservices%2FWorld_Imagery%2FMapServer%2Ftile%2F%7B%7Bz%7D%7D%2F%7B%7By%7D%7D%2F%7B%7Bx%7D%7D.jpg

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example

This example downloads a small area around the the Statue of Liberty from the New York City

data set (4.7 billion points) which can be viewed in its entirety in Potree

(http://potree.entwine.io/data/nyc.html) or Plasio

(http://speck.ly/?s=http%3 A%2F %2Fc%5B0-
7%5D.greyhound.io&r=ept%3A%2F%?2Fna.entwine.io%2Fnyc&ca=-0&ce=49.06&ct=-
8239196%2C4958509.308%2C337&cd=42640.943&cmd=125978.13&ps=2&pa=0.1&ze=1&cOs=remote %03 A%

[

"type": "readers.ept",
"filename": "http://na.entwine.io/nyc/ept.json",
"bounds": " ([-8242669, -8242529], [4966549, 4966674])"

by
"statue-of-liberty.las"

]

Additional attributes created by the EPT addon writer (page 109) can be referenced with the
addon option. Here is an example that overrides the Classification dimension with an
addon dimension derived from the original dataset:

[

"type": "readers.ept",
"filename": "http://na.entwine.io/autzen/ept. json",
"addons": { "Classification": "~/entwine/addons/autzen/smrf"

"type": "writers.las",
"filename": "autzen-ept-smrf.las"

]

For more details about addon dimensions and how to produce them, see writers.ept_addon
(page 109).

Options

filename EPT resource from which to read. Because EPT resources do not have a file
extension, to specify an EPT resource as a string, it must be prefixed with ept : / /. For
example, pdal translate ept://http://na.entwine.io/autzen
autzen.laz. [Required]

56 Chapter 7. Drivers

http://potree.entwine.io/data/nyc.html
http://speck.ly/?s=http%3A%2F%2Fc%5B0-7%5D.greyhound.io&r=ept%3A%2F%2Fna.entwine.io%2Fnyc&ca=-0&ce=49.06&ct=-8239196%2C4958509.308%2C337&cd=42640.943&cmd=125978.13&ps=2&pa=0.1&ze=1&c0s=remote%3A%2F%2Fimagery%3Furl%3Dhttp%3A%2F%2Fserver.arcgisonline.com%2FArcGIS%2Frest%2Fservices%2FWorld_Imagery%2FMapServer%2Ftile%2F%7B%7Bz%7D%7D%2F%7B%7By%7D%7D%2F%7B%7Bx%7D%7D.jpg

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

spatialreference Spatial reference to apply to the data. Overrides any SRS in the input itself.
Can be specified as a WKT, proj.4 or EPSG string. [Default: none]

bounds The extents of the resource to select in 2 or 3 dimensions, expressed as a string, €.g.:
([xmin, xmax], [ymin, ymax], [zmin, zmax]).Ifomitted, the entire
dataset will be selected.

resolution A point resolution limit to select, expressed as a grid cell edge length. Units
correspond to resource coordinate system units. For example, for a coordinate system
expressed in meters, a resolution value of 0.1 will select points up to a ground
resolution of 100 points per square meter.

The resulting resolution may not be exactly this value: the minimum possible resolution
that is at least as precise as the requested resolution will be selected. Therefore the result
may be a bit more precise than requested.

addons A mapping of assignments of the form DimensionName: AddonPath, which
assigns dimensions from the specified paths to the named dimensions. These addon
dimensions are created by the EPT addon writer (page 109). If the dimension names
already exist in the EPT Schema (https://entwine.io/entwine-point-tile.html#schema) for
the given resource, then their values will be overwritten with those from the appropriate
addon.

Addons may used to override well-known dimension (page 251). For example, an addon
assignment of "Classification":
"~/addons/autzen/MyGroundDimension/" will override an existing EPT
Classification dimension with the custom dimension.

origin EPT datasets are lossless aggregations of potentially multiple source files. The origin
options can be used to select all points from a single source file. This option may be
specified as a string or an integral ID.

The string form of this option selects a source file by its original file path. This may be a
substring instead of the entire path, but the string must uniquely select only one source
file (via substring search). For example, for an EPT dataset created from source files
one.las, two.las, and two.bpf, “one” is a sufficient selector, but “two” is not.

The integral form of this option selects a source file by its OriginId dimension, which
can be determined from the file’s position in EPT metadata file
entwine—-files. json.

polygon The clipping polygon, expressed in a well-known text string, eg: “POLYGON((0 0,
5000 10000, 10000 0, 0 0))”. This option can be specified more than once by placing
values in an array.

threads Number of worker threads used to download and process EPT data. A minimum of 4
will be used no matter what value is specified.

header HTTP headers to forward for remote EPT endpoints, structured as a JSON object of
key/value string pairs.

7.2. Readers 57

https://entwine.io/entwine-point-tile.html#schema

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

query HTTP query parameters to forward for remote EPT endpoints, structured as a JSON
object of key/value string pairs.

7.2.4 readers.e57

The ES7 Reader supports reading from E57 files.

The reader supports ES7 files with Cartesian point clouds.

Note: ES57 files can contain multiple point clouds stored in a single file. If that is the case, the
reader will read all the points from all of the internal point clouds as one.

Only dimensions present in all of the point clouds will be read.

Note: Point clouds stored in spherical format are not supported.

Note: The ES57 cartesianlnvalidState dimension is mapped to the Omit PDAL dimension. A
range filter can be used to filter out the invalid points.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Example 1

"type":"readers.eb7",
"filename":"inputfile.eb57"

"type":"writers.text",
"filename":"outputfile.txt"

58 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example 2

"type":"readers.eb7",
"filename":"inputfile.e57"

"type":"filters.range",
"limits":"Omit [0:0]"

"type":"writers.text",
"filename":"outputfile.txt"

Options

filename ES57 file to read [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

7.2.5 readers.faux
The faux reader is used for testing pipelines. It does not read from a file or database, but
generates synthetic data to feed into the pipeline.

The faux reader requires a mode argument to define the method in which points should be
generated. Valid modes are as follows:

constant The values provided as the minimums to the bounds argument are used for the X, Y
and Z value, respectively, for every point.

random Random values are chosen within the provided bounds.
ramp Value increase uniformly from the minimum values to the maximum values.

uniform Random values of each dimension are uniformly distributed in the provided ranges.

7.2. Readers 59

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

normal Random values of each dimension are normally distributed in the provided ranges.

grid Creates points with integer-valued coordinates in the range provided (excluding the upper
bound).

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example
[
{
"type":"readers.faux",
"bounds":" ([0,1000000], [0,1000000], [0,100])",
"count":"10000",
"mode" : "random"
br
{
"type":"writers.text",
"filename":"outputfile.txt"
}
]
Options

bounds The spatial extent within which points should be generated. Specified as a string in
the form “([xmin,xmax],[ymin,ymax],[zmin,zmax])”. [Default: unit cube]

count The number of points to generate. [Required, except when mode is ‘grid’]
override_srs Spatial reference to apply to data. [Optional]

mean_xlylz Mean value in the X, y, or z dimension respectively. (Normal mode only) [Default:
0]

stdev_xlylz Standard deviation in the X, y, or z dimension respectively. (Normal mode only)
[Default: 1]

9% ¢ 29 ¢ 29 ¢ 29 <¢

mode ‘“constant”, “random”, “ramp”, “uniform”, “normal” or “grid” [Required]

60 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

7.2.6 readers.gdal

The GDAL (http://gdal.org) reader reads GDAL readable raster
(http://www.gdal.org/formats_list.html) data sources as point clouds.

Each pixel is given an X and Y coordinate (and corresponding PDAL dimensions) that are
center pixel, and each band is represented by “band-1”, “band-2”, or “band-n”. Using the
‘header’ option allows naming the band data to standard PDAL dimensions.

Default Embedded Stage
This stage is enabled by default

Basic Example

Simply writing every pixel of a JPEG to a text file is not very useful.
[

"type":"readers.gdal",
"filename":"./pdal/test/data/autzen/autzen. jpg"

"type":"writers.text",
"filename":"outputfile.txt"

LAS Example

The following example assigns the bands from a JPG to the RGB values of an ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
file using writers.las (page 117).

[

"type":"readers.gdal",
"filename":"./pdal/test/data/autzen/autzen. jpg",
"header": "Red, Green, Blue"

"type":"writers.text",
"filename":"outputfile.txt"

7.2. Readers 61

http://gdal.org
http://www.gdal.org/formats_list.html
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

filename GDALOpen
(https://gdal.org/api/raster_c_api.html#gdal_8h_1aca054554723599641511f9c891d678d5¢)
‘able raster file to read [Required]

count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

header A comma-separated list of dimension (page 251) IDs to map bands to. The length of
the list must match the number of bands in the raster.

7.2.7 readers.geowave

The GeoWave reader uses GeoWave (https://github.com/locationtech/geowave) to read from
Accumulo. GeoWave entries are stored using EPSG:4326 (http://epsg.i0/4326/).

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example

"type":"readers.geowave",

"zookeeper url":"zookeeperl:2181, zookeeper2:2181,
—zookeeper3:2181",

"instance_name":"GeoWave",

"username" : "user",

"password": "pass",

"table_namespace":"PDAL_Table",

"feature_type_name":"PDAL_Point",

"data_adapter":"FeatureCollectionDataAdapter",

"points_per_ entry":"5000u",

"bounds":" ([0,1000000], [0,1000000], [0,100])™",

"filename":"./pdal/test/data/autzen/autzen. jpg"

62 Chapter 7. Drivers

https://gdal.org/api/raster_c_api.html#gdal_8h_1aca05455472359964151f9c891d678d5e
https://github.com/locationtech/geowave
http://epsg.io/4326/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"writers.text",
"filename":"outputfile.txt"

Options

count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

zookeeper_url The comma-delimited URLSs for all zookeeper servers, this will be directly
used to instantiate a ZookeeperInstance. [Required]

instance_name the zookeeper instance name, this will be directly used to instantiate a
ZookeeperInstance. [Required]

username The username for the account to establish an Accumulo connector. [Required]
password The password for the account to establish an Accumulo connector. [Required]
table_namespace The table name to be used when interacting with GeoWave. [Required]

feature_type_name The feature type name to be used when ineracting GeoWave. [Default:
PDAL_Point]

data_adapter FeatureCollectionDataAdapter stores multiple points per Accumulo entry.
FeatureDataAdapter stores a single point per Accumulo entry. [Default:
FeatureCollectionDataAdapter]

points_per_entry Sets the maximum number of points per Accumulo entry when using
FeatureCollectionDataAdapter. [Default: 5000]

bounds The extent of the bounding rectangle to use to query points, expressed as a string, eg:
“([xmin,xmax],[ymin,ymax],[zmin,zmax])”. [Default: unit cube]

7.2.8 readers.hdf

The HDF reader reads data from files in the HDF5 format.
(https://www.hdfgroup.org/solutions/hdf5/) You must explicitly specify a mapping of HDF
datasets to PDAL dimensions using the dimensions parameter. ALL dimensions must be
scalars and be of the same length. Compound types are not supported at this time.

Dynamic Plugin

7.2. Readers 63

https://www.hdfgroup.org/solutions/hdf5/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Example

This example reads from the Autzen HDF example with all dimension properly mapped and
then outputs a LAS file.

[

"type": "readers.hdf",
"filename": "test/data/hdf/autzen.h5",
"dimensions":
{
"X" : "autzen/X",
"Y" : "autzen/Y",
"zZ" : "autzen/z",
"Red" : "autzen/Red",
"Blue" : "autzen/Blue",
"Green" : "autzen/Green",
"Classification" : "autzen/Classification",
"EdgeOfFlightLine" : "autzen/EdgeOfFlightLine",
"GpsTime" : "autzen/GpsTime",
"Intensity" : "autzen/Intensity",
"NumberOfReturns" : "autzen/NumberOfReturns",
"PointSourcelId" : "autzen/PointSourceId",
"ReturnNumber" : "autzen/ReturnNumber",
"ScanAngleRank" : "autzen/ScanAngleRank",
"ScanDirectionFlag" : "autzen/ScanDirectionFlag",
"UserData" : "autzen/UserData"

"type" : "writers.las",
"filename": "output.las",
"scale_ x": 1.0e-5,
"scale_y": 1.0e-5,

"scale_z": 1.0e-5,
"offset_x": "auto",
"offset_y": "auto",
"offset_z": "auto"

64 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: All dimensions must be simple numeric HDF datasets with equal lengths. Compound
types, enum types, string types, etc. are not supported.

Warning: The HDF reader does not set an SRS.

Common Use Cases

A possible use case for this driver is reading NASA’s I[CESat-2 (https://icesat-2.gsfc.nasa.gov/)
data. This example reads the X, Y, and Z coordinates from the ICESat-2 ATLO3
(https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/ICESat2_ATL03_ATBD_r002.pdf)
format and converts them into a LAS file.

Note: ICESat-2 data use EPSG:7912 (https://epsg.10/7912). ICESat-2 Data products
documentation can be found here (https://icesat-2.gsfc.nasa.gov/science/data-products)

"type": "readers.hdf",
"filename": "ATL03_20190906201911_10800413_002_01.h5",
"dimensions":
{
"X" : "gtll/heights/lon_ph",
"Y" : "gtll/heights/lat_ph",
"zZ" : "gtll/heights/h_ph"
}
}I
{
"type" : "writers.las",
"filename": "output.las"

Options

count Maximum number of points to read. [Default: unlimited]

7.2. Readers 65

https://icesat-2.gsfc.nasa.gov/
https://icesat-2.gsfc.nasa.gov/sites/default/files/page_files/ICESat2_ATL03_ATBD_r002.pdf
https://epsg.io/7912
https://icesat-2.gsfc.nasa.gov/science/data-products

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

dimensions A JSON map with PDAL dimension names as the keys and HDF dataset paths as
the values.

7.2.9 readers.i3s

Indexed 3d Scene Layer (I3S) (https://github.com/Esri/i3s-
spec/blob/master/format/Indexed%203d%20Scene%20Layer%20Format%?20Specification.md)
is a specification created by Esri as a format for their 3D Scene Layer and scene services. The
I3S reader handles RESTful webservices in an I3S file structure/format.

Example

This example will download the Autzen dataset from the arcgis scene server and output it to a
las file. This is done through PDAL’s command line interface or through the pipeline.

[

"type": "readers.i3s",
"filename": "https://tiles.arcgis.com/tiles/8cv2FuXuWSfFOnbL/
—arcgis/rest/services/AUTZEN_LiDAR/SceneServer",
"bounds": " ([-123.075542,-123.06196], [44.049719,44.06278])"
}

pdal translate i3s://https://tiles.arcgis.com/tiles/8cv2FuXuWSfFOnbL/
—arcgis/rest/services/AUTZEN_LiDAR/SceneServer \

autzen.las \

——readers.i3s.threads=64 \

——readers.i3s.bounds=" ([-123.075542,-123.06196], [44.049719, 44.
—06278])"

Options

count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

filename I3S file stored remotely. These must be prefaced with an “i3s://”.

66 Chapter 7. Drivers

https://github.com/Esri/i3s-spec/blob/master/format/Indexed%203d%20Scene%20Layer%20Format%20Specification.md

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example remote file: pdal translate i13s://https://tiles.arcgis.
com/tiles/arcgis/rest/services/AUTZEN_LiDAR/SceneServer
autzen.las

threads This specifies the number of threads that you would like to use while reading. The
default number of threads to be used is 8. This affects the speed at which files are fetched
and added to the PDAL view.

Example: ——readers.i3s.threads=64

bounds The bounds refers to the extents of the resource in X, Y, Z coordinates with the Z
dimension being optional. This must be input as a string.

Example:readers.i3s.bounds=" ([xmin, xmax], [ymin, ymax], [zmin,
zmax])"

dimensions Comma-separated list of dimensions that should be read. Specify the Esri name,
rather than the PDAL dimension name.

Esri Pdal

INTENSITY Intensity
CLASS_CODE | ClassFlags
FLAGS Flag

RETURNS NumberOfReturns

USER_DATA UserData
POINT_SRC_ID | PointSourceld

GPS_TIME GpsTime
SCAN_ANGLE | ScanAngleRank
RGB Red

Example: ——readers.i3s.dimensions="returns, rgb"

min_density and max_density This is the range of density of the points in the nodes that will
be selected during the read. The density of a node is calculated by the vertex count
divided by the effective area of the node. Nodes do not have a uniform density
acrossdepths in the tree, so some sections may be more or less dense than others. The
default values for these parameters will pull all the leaf nodes (the highest resolution).

Example: ——readers.i3s.min_density=2
—-—readers.i3s.max_density=2.5

7.2.10 readers.ilvis2

The ILVIS2 reader read from files in the ILVIS2 format. See the product spec
(https://nsidc.org/data/ilvis2) for more information.

7.2. Readers 67

https://nsidc.org/data/ilvis2

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Parameter Description

The IceBridge LVIS Level-2 Geolocated Surface Elevation Product ASCII text format data files contain fields as described in Table 2.

Table 2. ASCII Text File Parameter Description

Parameter Description Units
LVIS_LFID LVIS file identification, including date and time of collection and file number. The second through sixth values in the first field n/a
represent the Modified Julian Date of data collection.
SHOTNUMBER Laser shot assigned during collection n/a
TIME UTC decimal seconds of the day Seconds
LONGITUDE_CENTROID | Refers to the centroid longitude of the corresponding LVIS Level-1B waveform. Degrees
east
LATITUDE_CENTROID Refers to the centroid latitude of the corresponding LVIS Level-1B waveform. Degrees
north
ELEVATION_CENTROID | Refers to the centroid elevation of the corresponding LVIS Level-1B waveform. Meters
LONGITUDE_LOW Longitude of the lowest detected mode within the waveform Degrees
east
LATITUDE_LOW Latitude of the lowest detected mode within the waveform Degrees
north
ELEVATION_LOW Mean elevation of the lowest detected mode within the waveform Meters
LONGITUDE_HIGH Longitude of the center of the highest mode in the waveform Degrees
east
LATITUDE_HIGH Latitude of the center of the highest mode in the waveform Degrees
north
ELEVATION_HIGH Elevation of the center of the highest mode in the waveform Meters
Fig. 7.3: Dimensions provided by the ILVIS2 reader
Default Embedded Stage
This stage is enabled by default
Streamable Stage
This stage supports streaming operations
Example
"type":"readers.ilvis2",
"filename":"ILVIS2_GL2009_0414_R1401_042504.TXT",
"metadata":"ILVIS2_ GL2009_0414_R1401_042504.xml1"
by
"type":"writers.las",
"filename":"outputfile.las"
68 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

filename File to read from [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

mapping Which ILVIS2 field type to map to X, Y, Z dimensions ‘LOW’, ‘CENTROID’, or
‘HIGH’ [Default: ‘CENTROID’]

metadata XML metadata file to coincidentally read [Optional]

7.2.11 readers.las

The LAS Reader supports reading from LAS format
(http://asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html) files,
the standard interchange format for LIDAR data. The reader does NOT support point formats
containing waveform data (4, 5, 9 and 10).

The reader also supports compressed LAS files, known as LAZ files or LASzip
(http://laszip.org) files. In order to use compresed LAS (LAZ), your version of PDAL must be
built with one of the two supported decompressors, LASzip (http://laszip.org) or LAZperf
(https://github.com/verma/laz-perf). See the compression (page 71) option below for more
information.

Note: LAS stores X, Y and Z dimensions as scaled integers. Users converting an input LAS
file to an output LAS file will frequently want to use the same scale factors and offsets in the
output file as existed in the input file in order to maintain the precision of the data. Use the
forward option on the writers.las (page 117) to facilitate transfer of header information from
source to destination LAS/LAZ files.

Note: LAS 1.4 files can contain datatypes that are actually arrays rather than individual
dimensions. Since PDAL doesn’t support these datatypes, it must map them into datatypes it
supports. This is done by appending the array index to the name of the datatype. For example,
datatypes 11 - 20 are two dimensional array types and if a field had the name Foo for datatype
11, PDAL would create the dimensions FooO and Fool to hold the values associated with LAS
field Foo. Similarly, datatypes 21 - 30 are three dimensional arrays and a field of type 21 with
the name Bar would cause PDAL to create dimensions BarQO, Barl and Bar2. See the

7.2. Readers 69

http://asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
http://laszip.org
https://github.com/verma/laz-perf

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

information on the extra bytes VLR in the LAS Specification
(http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf) for more information
on the extra bytes VLR and array datatypes.

Warning: LAS 1.4 files that use the extra bytes VLR and datatype 0 will be accepted, but
the data associated with a dimension of datatype O will be ignored (no PDAL dimension
will be created).

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example
[
{
"type":"readers.las",
"filename":"inputfile.las"
}y
{
"type":"writers.text",
"filename":"outputfile.txt"
}
]
Options

filename LAS file to read [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

70 Chapter 7. Drivers

http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

extra_dims Extra dimensions to be read as part of each point beyond those specified by the
LAS point format. The format of the option is <dimension_name>=<type> [,
. .. 1. Any valid PDAL rype (page 255) can be specified.

Note: The presence of an extra bytes VLR when reading a version 1.4 file or a version
1.0 - 1.3 file with use_eb_vlr set causes this option to be ignored.

use_eb_vlr If an extra bytes VLR is found in a version 1.0 - 1.3 file, use it as if it were in a 1.4
file. This option has no effect when reading a version 1.4 file. [Default: false]

compression May be set to “lazperf” or “laszip” to choose either the LazPerf decompressor or
the LASzip decompressor for LAZ files. PDAL must have been built with support for the
decompressor being requested. The LazPerf decompressor doesn’t support version 1
LAZ files or version 1.4 of LAS. [Default: ‘none’]

7.2.12 readers.matlab

The Matlab Reader supports readers Matlab .mat files. Data must be in a Matlab struct
(https://www.mathworks.com/help/matlab/ref/struct.html), with field names that correspond to
dimension (page 251) names. No ability to provide a name map is yet provided.

Additionally, each array in the struct should ideally have the same number of points. The
reader takes its number of points from the first array in the struct. If the array has fewer
elements than the first array in the struct, the point’s field beyond that number is set to zero.

Note: The Matlab reader requires the Mat-File API from MathWorks, and it must be explicitly
enabled at compile time with the BUTLD_PLUGIN_MATLAB=ON variable

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

7.2. Readers 71

https://www.mathworks.com/help/matlab/ref/struct.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example
[
{
"type":"readers.matlab",
"struct":"PDAL",
"filename":"autzen.mat"
} 4
{
"type":"writers.las",
"filename":"output.las"
}
]
Options

filename Input file name. [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

struct Array structure name to read. [Default: ‘PDAL’]

7.2.13 readers.memoryview

The memoryview reader is a special stage that allows the reading of point data arranged in rows
directly from memory — each point needs to have dimension data arranged at a fixed offset from
a base address of the point. Before each point is read, the memoryview reader calls a function
that should return the point’s base address, or a null pointer if there are no points to be read.

Note that the memoryview reader does not currently work with columnar data (data where
individual dimensions are packed into arrays).

7.2.14 Usage

The memoryview reader cannot be used from the command-line. It is for use by software using
the PDAL APL

After creating an instance of the memoryview reader, the user should call pushField() for every
dimension that should be read from memory. pushField() takes a single argument, a
MemoryViewReader::Field, that consists of a dimension name, a type and an offset from the
point base address:

72 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

struct Field
{

std::string m_name;
Dimension: :Type m_type;
size t m_offset;

}i

void pushField(const Fields¢);

The user should also call setIncrementer(), a function that takes a single argument, a
std::function that receives the ID of the point to be added and should return the base address of
the point data, or a null pointer if there are no more points to be read.

using PointIncrementer = std::function<char x (PointId)>;

void setIncrementer (PointIncrementer inc);

Options

None.

7.2.15 readers.mbio

The mbio reader allows sonar bathymetry data to be read into PDAL and treated as data
collected using LIDAR sources. PDAL uses the MB-System
(https://www.mbari.org/products/research-software/mb-system/) library to read the data and
therefore supports all formats
(http://www3.mbari.org/products/mbsystem/html/mbsystem_formats.html) supported by that
library. Some common sonar systems are NOT supported by MB-System, notably Kongsberg,
Reson and Norbit. The mbio reader reads each “beam” of data after averaging and processing
by the MB-System software and stores the values for the dimensions ‘X’, “Y’, “Z’ and
‘Amplitude’. X and Y use longitude and latitude for units and the Z values are in meters
(negative, being below the surface). Units for ‘Amplitude’ is not specified and may vary.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

7.2. Readers 73

https://www.mbari.org/products/research-software/mb-system/
http://www3.mbari.org/products/mbsystem/html/mbsystem_formats.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example

This reads beams from a sonar data file and writes points to a LAS file.
[

"type" : "readers.mbio",
"filename" : "shipdata.m57",
"format" : "MBF_EM3000RAW"

"type":"writers.las",
"filename":"outputfile.las"

Options

filename Filename to read from [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

format Name of number of format of file being read. See MB-System documentation for a list
of all formats
(http://www3.mbari.org/products/mbsystem/html/mbsystem_formats.html). [Required]

datatype Type of data to read. Either ‘multibeam’ or ‘sidescan’. [Default: ‘multibeam’]

timegap The maximum number of seconds that can elapse between pings before the end of
the data stream is assumed. [Default: 1.0]

speedmin The minimum speed that the ship can be moving to before the end of the data
stream is assumed. [Default: 0]

7.2.16 readers.mrsid

Implements MrSID 4.0 LiDAR Compressor. It requires the Lidar DSDK
(https://www.extensis.com/support/developers) to be able to decompress and read data.

Dynamic Plugin

74 Chapter 7. Drivers

http://www3.mbari.org/products/mbsystem/html/mbsystem_formats.html
https://www.extensis.com/support/developers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This stage requires a dynamic plugin to operate

Example
[
{
"type":"readers.mrsid",
"filename":"myfile.sid"
b
{
"type":"writers.las",
"filename":"outputfile.las"
}
]
Options

filename Filename to read from. [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

7.2.17 readers.nitf

The NITF (http://en.wikipedia.org/wiki/National_Imagery_Transmission_Format) format is
used primarily by the US Department of Defense and supports many kinds of data inside a
generic wrapper. The NITF 2.1 (http://www.gwg.nga.mil/ntb/baseline/docs/2500c/index.html)
version added support for LIDAR point cloud data, and the NITF file reader supports reading
that data, if the NITF file supports it.

* The file must be NITF 2.1
e There must be at least one Image segment (“IM”).

* There must be at least one DES segment
(http://jitc.thu.disa.mil/cgi/nitf/registers/desreg.aspx) (“DE”) named “LIDARA”.

* Only LAS or LAZ data may be stored in the LIDARA segment

The dimensions produced by the reader match exactly to the LAS dimension names and types
for convenience in file format transformation.

7.2. Readers 75

http://en.wikipedia.org/wiki/National_Imagery_Transmission_Format
http://www.gwg.nga.mil/ntb/baseline/docs/2500c/index.html
http://jitc.fhu.disa.mil/cgi/nitf/registers/desreg.aspx

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: Only LAS or LAZ data may be stored in the LIDARA segment. PDAL uses the
readers.las (page 69) and writers.las (page 117) to actually read and write the data.

Note: PDAL uses a fork of the NITF Nitro
(http://mitro-nitf.sourceforge.net/wikka.php?wakka=HomePage) library available at
https://github.com/hobu/nitro for NITF read and write support.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example
[
{
"type":"readers.nitf",
"filename":"mynitf.nitf"
}I
{
"type":"writers.las",
"filename":"outputfile.las"
}
]
Options

filename Filename to read from [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

extra_dims Extra dimensions to be read as part of each point beyond those specified by the
LAS point format. The format of the option is <dimension_name>=<type>[,

76 Chapter 7. Drivers

http://nitro-nitf.sourceforge.net/wikka.php?wakka=HomePage
https://github.com/hobu/nitro

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

... 1. Any PDAL rype (page 255) can be specified.

Note: The presence of an extra bytes VLR when reading a version 1.4 file or a version
1.0 - 1.3 file with use_eb_vlr set causes this option to be ignored.

use_eb_vlr If an extra bytes VLR is found in a version 1.0 - 1.3 file, use it as if it were in a 1.4
file. This option has no effect when reading a version 1.4 file. [Default: false]

compression May be set to “lazperf” or “laszip” to choose either the LazPerf decompressor or
the LASzip decompressor for LAZ files. PDAL must have been built with support for the
decompressor being requested. The LazPerf decompressor doesn’t support version 1
LAZ files or version 1.4 of LAS. [Default: “none”]

7.2.18 readers.numpy
PDAL has support for processing data using filters.python (page 242), but it is also convenient
to read data from Numpy (http://www.numpy.org/) for processing in PDAL.

Numpy (http://www.numpy.org/) supports saving files with the save method, usually with the
extension .npy. As of PDAL 1.7.0, . npz files were not yet supported.

Warning: It is untested whether problems may occur if the versions of Python used in
writing the file and for reading the file don’t match.

Array Types

readers.numpy supports reading data in two forms:

* As astructured array (https://docs.scipy.org/doc/numpy/user/basics.rec.html) with
specified field names (from laspy (https://github.com/laspy/laspy) for example)

* As a standard array that contains data of a single type.

Structured Arrays

Numpy arrays can be created as structured data, where each entry is a set of fields. Each field
has a name. As an example, laspy (https://github.com/laspy/laspy) provides its . points as an
array of named fields:

import laspy
f = laspy.file.File('test/data/autzen/autzen.las"')
print (f.points[0:1])

7.2. Readers 77

http://www.numpy.org/
http://www.numpy.org/
https://docs.scipy.org/doc/numpy/user/basics.rec.html
https://github.com/laspy/laspy
https://github.com/laspy/laspy

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

array ([((63608330, 84939865, 40735, 65, 73, 1, -11, 126, 7326,
—245385.60820904),)1,

dtype=[('point', [('X', '<i4d"'"), ('Yy', '<id4'"), ('z', '<id"), |
—'intensity', '<u2'), ('flag_byte', 'ul'), ('raw_classification',
—'ul'), ('scan_angle_rank', 'il'"), ('user_data', 'ul'), ('pt_src_id
', '<u2'), ('gps_time', '<£f8')1)1])

—

The numpy reader supports reading these Numpy arrays and mapping field names to standard
PDAL dimension (page 251) names. If that fails, the reader retries by removing _, —, or space
in turn. If that also fails, the array field names are used to create custom PDAL dimensions.

Standard (non-structured) Arrays

Arrays without field information contain a single datatype. This datatype is mapped to a
dimension specified by the dimension option.

f = open('./perlin.npy', 'rb')
data = np.load(f,)

data.shape
(100, 100)

data.dtype
dtype ('float64"'")

pdal info perlin.npy —--readers.numpy.dimension=Intensity —--readers.
—numpy .assign_z=4

"filename": "..\/test\/data\/plang\/perlin.npy",
"pdal_version": "1.7.1 (git-version: 399e19)",
"stats":
{
"statistic":
[
{
"average": 49.5,
"count": 10000,
"maximum": 99,
"minimum": O,
"name": "X",
"position": O,

"stddev": 28.86967866,
"variance": 833.4583458
Yo

78 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"average": 49.5,
"count": 10000,
"maximum": 99,
"minimum": O,
"name": "Y",
"position": 1,

"stddev": 28.87633116,
"variance": 833.8425015

"average": 0.01112664759,
"count": 10000,
"maximum": 0.5189296418,

"minimum": -0.5189296418,
"name": "Intensity",
"position": 2,

"stddev": 0.2024120437,
"variance": 0.04097063545

X, Y and Z Mapping

Unless the X, Y or Z dimension is specified as a field in a structured array, the reader will
create dimensions X, Y and Z as necessary and populate them based on the position of each
item of the array. Although Numpy arrays always contain contiguous, linear data, that data can
be seen to be arranged in more than one dimension. A two-dimensional array will cause
dimensions X and Y to be populated. A three dimensional array will cause X, Y and Z to be
populated. An array of more than three dimensions will reuse the X, Y and Z indices for each
dimension over three.

When reading data, X Y and Z can be assigned using row-major (C) order or column-major
(Fortran) order by using the order option.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

7.2. Readers 79

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This stage supports streaming operations

Loading Options
readers.numpy (page 77) supports two modes of operation - the first is to pass a reference to a
.npy file to the £i1lename argument. It will simply load it and read.

The second is to provide a reference to a . py script to the £ilename argument. It will then
invoke the Python function specified in module and function with the fargs that you
provide.

Loading from a Python script

A reference to a Python function that returns a Numpy array can also be used to tell
readers.numpy (page 77) what to load. The following example itself loads a Numpy array from
a Python script

Python Script

import numpy as np

def load(filename) :
array = np.load(filename)
return array

Command Line Invocation

Using the above Python file with its 10ad function, the following pdal_info invocation passes
in the reference to the filename to load.

pdal info threedim.py \
——readers.numpy . function=load \
——readers.numpy.fargs=threedim.npy \
——driver readers.numpy

Pipeline

An example Pipeline (page 45) definition would follow:

80 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"function": "load",
"filename": "threedim.py",
"fargs": "threedim.npy",
"type": "readers.numpy"

y

Options

filename npy file to read or optionally, a .py file that defines a function that returns a Numpy
array using the module, function, and fargs options. [Required]

count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

dimension Dimension (page 251) name to map raster values

order Either ‘row’ or ‘column’ to specify assigning the X,Y and Z values in a row-major or
column-major order. [Default: matches the natural order of the array.]

module The Python module name that is holding the function to run.
function The function name in the module to call.

fargs The function args to pass to the function

Note: The functionality of the ‘assign_z’ option in previous versions is provided with
filters.assign (page 142)

[3 9 [3 b

The functionality of the ‘x’, ‘y’, and ‘z’ options in previous versions are generally handled with
the current ‘order’ option.

7.2.19 readers.oci

The OCI reader is used to read data from Oracle point cloud
(http://docs.oracle.com/cd/B28359_01/appdev.111/b28400/sdo_pc_pkg_ref.htm) databases.

Dynamic Plugin

7.2. Readers 81

http://docs.oracle.com/cd/B28359_01/appdev.111/b28400/sdo_pc_pkg_ref.htm

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This stage requires a dynamic plugin to operate

Example
[
{

"type":"readers.oci",

"query" :"SELECT \r\n 1.\"OBJ_ID\", 1.\"BLK_ID\",
<1 .\"BLK_EXTENT\", \r\n 1.\"BLK_DOMAIN\", 1.\"PCBLK_MIN_
SRES\", \r\n 1.\"PCBLK_MAX_RES\", 1.\"NUM_POINTS\",\r\n _
s 1.\"NUM_UNSORTED_POINTS\", 1.\"PT_SORT_DIM\", \r\n .
o 1.\"POINTS\", b.cloud\r\n FROM AUTZEN_BLOCKS 1,
“AUTZEN_CLOUD b\r\n WHERE 1.0bj_id = b.id and l.obj_id in_
< (1,2)\r\n ORDER BY 1.obj_id",

"connection":"grid/grid@localhost/orcl",

"populate_pointsourceid":"true"

br
{
"type":"writers.las",
"filename":"outputfile.las"
}
1
Options

count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

connection Oracle connection string to connect to database, in the form
“user/pass @host/instance” [Required]

query SELECT statement that returns an SDO_PC object as its first and only queried item
[Required]

xml_schema_dump Filename to dump the XML schema to.

populate_pointsourceid Boolean value. If true, then add in a point cloud to every point read
on the PointSourceld dimension. [Default: false]

82 Chapter 7. Drivers

mailto:user/pass@host/instance

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

7.2.20 readers.optech

The Optech reader reads Corrected Sensor Data (.csd) files. These files contain scan angles,
ranges, IMU and GNSS information, and boresight calibration values, all of which are
combined in the reader into XYZ points using the WGS84 reference frame.

Default Embedded Stage
This stage is enabled by default

Example
[
{
"type":"readers.optech",
"filename":"input.csd"
b
{
"type":"writers.text",
"filename":"outputfile.txt"
}
1
Options

filename csd file to read [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

7.2.21 readers.pcd

The PCD Reader supports reading from Point Cloud Data (PCD)
(https://pcl-tutorials.readthedocs.io/en/latest/pcd_file_format.html) formatted files, which are
used by the Point Cloud Library (PCL) (http://pointclouds.org).

Default Embedded Stage
This stage is enabled by default

7.2. Readers 83

https://pcl-tutorials.readthedocs.io/en/latest/pcd_file_format.html
http://pointclouds.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Streamable Stage

This stage supports streaming operations

Example
[
{
"type":"readers.pcd",
"filename":"inputfile.pcd"
}y
{
"type":"writers.text",
"filename":"outputfile.txt"
}
]
Options

filename PCD file to read [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

7.2.22 readers.pgpointcloud

The PostgreSQL Pointcloud Reader allows you to read points from a PostgreSQL database
with PostgreSQL Pointcloud (https://github.com/pramsey/pointcloud) extension enabled. The
Pointcloud extension stores point cloud data in tables that contain rows of patches. Each patch
in turn contains a large number of spatially nearby points.

The reader pulls patches from a table, potentially sub-setting the query with a “where” clause.

Dynamic Plugin

This stage requires a dynamic plugin to operate

84 Chapter 7. Drivers

https://github.com/pramsey/pointcloud

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example

"type":"readers.pgpointcloud",
"connection":"dbname='lidar' user='user'",
"table":"lidar",
"column":"pa",
"spatialreference":"EPSG:26910",
"where":"PC_Intersects (pa, ST_MakeEnvelope (560037.36
—~5114846.45, 562667.31, 5118943.24, 26910))"
o
{

L]

"type":"writers.text",
"filename" :"output.txt"

Options

count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

connection PostgreSQL connection string. In the form “host=hostname dbname=database
user=username password=pw port=5432" [Required]

table Database table to read from. [Required]
schema Database schema to read from. [Default: public]

column Table column to read patches from. [Default: pa]

7.2.23 readers.ply

The ply reader reads points and vertices from the polygon file format
(http://paulbourke.net/dataformats/ply/), a common file format for storing three dimensional
models. The ply reader can read ASCII and binary ply files.

Default Embedded Stage
This stage is enabled by default

7.2. Readers 85

http://paulbourke.net/dataformats/ply/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Streamable Stage

This stage supports streaming operations

Example
[
{
"type":"readers.ply",
"filename":"inputfile.ply"
y
{
"type":"writers.text",
"filename":"outputfile.txt"
}
]
Options

filename ply file to read [Required]

count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can

be specified as a WKT, proj.4 or EPSG string. [Default: none]

7.2.24 readers.pts

The PTS reader reads data from Leica Cyclone PTS files. It infers dimensions from points

stored in a text file.

Default Embedded Stage
This stage is enabled by default

Example Pipeline

"type":"readers.pts",

86

Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"filename":"test.pts"

}o

{
"type":"writers.text",
"filename":"outputfile.txt"

Options

filename File to read. [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

7.2.25 readers.qfit

The QFIT reader read from files in the QFIT format
(http://nsidc.org/data/docs/daac/icebridge/ilatm 1b/docs/ReadMe.(fit.txt) originated for the
Airborne Topographic Mapper (ATM) project at NASA Goddard Space Flight Center.

Default Embedded Stage
This stage is enabled by default

Example

"type":"readers.qgfit",
"filename":"inputfile.gi",
"flip coordinates":"false",
"scale_z":"1.0"

"type":"writers.las",
"filename":"outputfile.las"

7.2. Readers 87

http://nsidc.org/data/docs/daac/icebridge/ilatm1b/docs/ReadMe.qfit.txt

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

filename File to read from [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

flip_coordinates Flip coordinates from 0-360 to -180-180 [Default: true]
scale_z Z scale. Use 0.001 to go from mm to m. [Default: 1]

little_endian Are data in little endian format? This should be automatically detected by the
driver. [Optional]

7.2.26 readers.rdb

The RDB reader reads from files in the RDB format, the in-house format used by RIEGL
Laser Measurement Systems GmbH (http://www.riegl.com).

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Installation

To build PDAL with rdb support, set rdb_DIR to the path of your local rdblib installation.
rdblib can be obtained from the RIEGL download pages
(http://www.riegl.com/members-area/software-downloads/libraries/) with a properly enabled
user account. The rdblib files do not need to be in a system-level directory, though they could
be (e.g. they could be in /usr/local, or just in your home directory somewhere). For help
building PDAL with optional libraries, see the optional library documentation
(http://pdal.io/compilation/unix.html#configure-your-optional-libraries).

Note:

* Minimum rdblib version required to build the driver and run the tests: 2.1.6

* This driver was developed and tested on Ubuntu 17.10 using GCC 7.2.0.

88 Chapter 7. Drivers

http://www.riegl.com
http://www.riegl.com
http://www.riegl.com/members-area/software-downloads/libraries/
http://pdal.io/compilation/unix.html#configure-your-optional-libraries

=T T - ¥ N O N

S)

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example

This example pipeline reads points from a RDB file and stores them in LAS format. Only
points classified as “ground points” are read since option £ilter is set to “riegl.class == 2"
(see line 5).

[

"type": "readers.rdb",
"filename": "autzen-thin-srs.rdbx",
"filter": "riegl.class == 2"

"type": "writers.las",
"filename": "autzen-thin-srs.rdbx"

Options

filename Name of file to read [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

filter Point filter expression string (see RDB SDK documentation for details) [Optional]
[Default: empty string (= no filter)]

extras Read all available dimensions (¢rue) or known PDAL dimensions only (false)
[Optional] [Default: false]

Dimensions

The reader maps following default RDB point attributes to PDAL dimensions (if they exist in
the RDB file):

7.2. Readers 89

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

RDB attribute PDAL dimension(s)
riegl.id Id::Pointld
riegl.source_cloud_id Id::Originld
riegl.timestamp Id::Internal Time

riegl.xyz Id::X, Id::Y, 1d::Z
riegl.intensity Id::Intensity

riegl.amplitude Id:: Amplitude
riegl.reflectance Id::Reflectance
riegl.deviation Id::Deviation
riegl.pulse_width Id::PulseWidth
riegl.background_radiation | 1d::BackgroundRadiation
riegl.target_index Id::ReturnNumber
riegl.target_count Id::NumberOfReturns
riegl.scan_direction Id::ScanDirectionFlag
riegl.scan_angle Id::ScanAngleRank
riegl.class Id::Classification

riegl.rgba Id::Red, Id::Green, Id::Blue
riegl.surface_normal Id::NormalX, Id::NormalY, Id::NormalZ

All other point attributes that may exist in the RDB file are ignored unless the option extras
is set to true. If so, a custom dimension is defined for each additional point attribute, whereas
the dimension name is equal to the point attribute name.

Note: Point attributes are read “as-is”, no scaling or unit conversion is done by the reader. The
only exceptions are point coordinates (riegl . xyz) and surface normals
(riegl.surface_normal) which are transformed to the RDB file’s SRS by applying the
matrix defined in the (optional) RDB file metadata object riegl.geo_tag.

Metadata

The reader adds following objects to the stage’s metadata node:

Object “database”

Contains basic information about the RDB file such as the bounding box, number of points and
the file ID.

90 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Listing 7.1: Example:

{
"bounds": {

"maximum": {
"X": -2504493.762,
"Yy": -3846841.252,
"Z": 4413210.394

b

"minimum": {
"X": -2505882.459,
"Yy": -3848231.393,
"Z": 4412172.548

}
b
"points": 10653,
"uuid": "637de54d-7e6b-4004-bbab-b6bc588ec9ea”

List “dimensions”

List of point attribute description objects.

Listing 7.2: Example:

[{
"compression_options": "shuffle",
"default_value": 0O,

"description": "Cartesian point coordinates wrt.

—~coordinate system (0: X, 1: Y, 2: Z)",
"invalid value": "",
"length": 3,
"maximum_value": 535000,

"minimum wvalue": -535000,
"name": "riegl.xyz",
"resolution": 0.00025,
"scale_ factor": 1,
"storage_class": "variable",
"title": "XYZ",

"unit_symbol": "m"

"compression_options": "shuffle",
"default_value": O,

"description": "Target surface reflectance",
"invalid value": "",

application,

7.2. Readers

91

21

22

23

24

25

26

27

28

29

30

20

21

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"length": 1,

"maximum value": 327.67,
"minimum value": -327.68,
"name": "riegl.reflectance",

"resolution": 0.01,
"scale_factor": 1,
"storage_class": "variable",
"title": "Reflectance",
"unit_symbol": "dB"

}]

Details about the point attribute properties see RDB SDK documentation.

Object “metadata”

Contains one sub-object for each metadata object stored in the RDB file.

Listing 7.3: Example:

"riegl.scan_ pattern": {
"rectangular": {

"phi_start": 45.0,
"phi_stop": 270.0,
"phi_increment": 0.040,
"theta_start": 30.0,
"theta_stop": 130.0,
"theta_increment": 0.040,

"program": {
"name": "High Speed"
}
}
}I
"riegl.geo_tag": {
"crs": {
"epsg": 4956,
"wkt": "GEOCCS[\"NAD83 (HARN) \/ Geocentric\",DATUMI\

< "NADS83 (HARN) \", SPHEROID[\"GRS 1980\", 6378137.000,298.257222101,
<AUTHORITY [\"EPSG\",\"7019\"]],AUTHORITY [\"EPSG\",\"6152\"11],
<PRIMEM[\"Greenwich\", 0.0000000000000000, AUTHORITY [\"EPSG\",\"8901\
—"]],UNIT[\"Meter\",1.00000000000000000000, AUTHORITY[\"EPSG\", \
<"9001\"]],AXIS[\"X\",OTHER],AXIS[\"Y\",EAST],AXIS[\"Z\",NORTH],
SAUTHORITY [\"EPSG\", \"4956\"]1"

b

"pose": [

0.837957447, 0.379440385, -0.392240121, -2505819.156,

92 Chapter 7. Drivers

22

23

24

25

26

27

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

-0.545735575, 0.582617132, -0.602270669, -3847595.645,
0.000000000, 0.718736580, 0.695282481, 4412064.882,
0.000000000, 0.000000000, 0.000000000, 1.000

The riegl.geo_tag object defines the Spatial Reference System (SRS) of the file. The
point coordinates are actually stored in a local coordinate system (usually horizontally leveled)
which is based on the SRS. The transformation from the local system to the SRS is defined by
the 4x4 matrix pose which is stored in row-wise order. Point coordinates (riegl .xyz) and
surface normals (riegl.surface_normal) are automatically transformed to the SRS by
the reader.

Details about the metadata objects see RDB SDK documentation.

List “transactions”

List of transaction objects describing the history of the file.

Listing 7.4: Example:
[{

"agent": "RDB Library 2.1.6-1677 (x86_64-windows, Apr 5 2018,
—10:58:39) ",

"comments": "",

"id": 1,

"rdb": "RDB Library 2.1.6-1677 (x86_64-windows, Apr 5 2018,

—~10:58:39)",

"settings": {
"cache_size": 524288000,
"chunk_size": 655360,
"chunk_size_lod": 20,

"compression_level": 10,

"primary attribute": ({
"compression_options": "shuffle",
"default_value": 0,
"description": "Cartesian point coordinates wrt. application,

—~coordinate system (0: X, 1: Y, 2: Z2)",
"invalid_value": "",
"length": 3,
"maximum_ value": 535000,
"minimum value": -535000,
"name": "riegl.xyz",

"resolution": 0.00025,
"scale factor": 1,

7.2. Readers 93

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"storage_class": "variable",

"title": "Xyz",

"unit_symbol": "m"

}

b
"start": "2018-04-06 10:10:39.336",
"stop": "2018-04-06 10:10:39.336",
"title": "Database creation"

"agent": "rdbconvert",
"comments": "",
"id": 2,

"rdb": "RDB Library 2.1.6-1677 (x86_64-windows,

—10:58:39) ",

"id": 3,

"rdb": "RDB Library 2.1.6-1677 (x86_64-windows,
—10:58:39) ",

"settings": "",

"start": "2018-04-06 10:10:41.666",

"stop": "2018-04-06 10:10:41.666",

"title": "Meta data saved"

}H]

Details about the transaction objects see RDB SDK documentation.

"settings": "",

"start": "2018-04-06 10:10:39.339",
"stop": "2018-04-06 10:10:39.380",
"title": "Import"

"agent": "RiSCAN PRO 64 bit v2.6.3",
"comments": "",

7.2.27 readers.rxp

Apr 5 2018,

Apr 5 2018,

The RXP reader read from files in the RXP format, the in-house streaming format used by

RIEGL Laser Measurement Systems GmbH (http://www.riegl.com).

Warning: This software has not been developed by RIEGL, and RIEGL will not provide
any support for this driver. Please do not contact RIEGL with any questions or issues
regarding this driver. RIEGL is not responsible for damages or other issues that arise from
use of this driver. This driver has been tested against RiVLib version 1.39 on a Ubuntu
14.04 using gcc43.

94

Chapter 7. Drivers

http://www.riegl.com

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Installation

To build PDAL with rxp support, set RiVLib_DIR to the path of your local RiVLib
installation. RiVLib can be obtained from the RIEGL download pages
(http://www.riegl.com/members-area/software-downloads/libraries/) with a properly enabled
user account. The RiVLib files do not need to be in a system-level directory, though they could
be (e.g. they could be in /usr/local, or just in your home directory somewhere). For help
building PDAL with optional libraries, see the optional library documentation.

Example

This example rescales the points, given in the scanner’s own coordinate system, to values that
can be written to a las file. Only points with a valid gps time, as determined by a pps pulse, are
read from the rxp, since the sync_to_pps option is “true”. Reflectance values are mapped to
intensity values using sensible defaults.

[

"type": "readers.rxp",

"filename": "120304_204030.rxp",
"sync_to_pps": "true",
"reflectance_ as_intensity": "true"

"type": "writers.las",
"filename": "outputfile.las",
"discard _high_ return numbers": "true"

]

We set the discard_high_return_numbers option to t rue on the writers.las

(page 117). RXP files can contain more returns per shot than is supported by las, and so we
need to explicitly tell the las writer to ignore those high return number points. You could also
use filters.python (page 242) to filter those points earlier in the pipeline.

7.2. Readers 95

http://www.riegl.com/members-area/software-downloads/libraries/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

filename File to read from, or rdtp URI for network-accessible scanner. [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

rdtp Boolean to switch from file-based reading to RDTP-based. [Default: false]

sync_to_pps If “true”, ensure all incoming points have a valid pps timestamp, usually
provided by some sort of GPS clock. If “false”, use the scanner’s internal time. [Default:
true]

reflectance_as_intensity If “true”, in addition to storing reflectance values directly, also stores
the values as Intensity by mapping the reflectance values in the range from
min_reflectance to max_reflectance to the range 0-65535. Values less than
min_reflectance are assigned the value 0. Values greater max_reflectance are assigned
the value 65535. [Default: true]

min_reflectance The low end of the reflectance-to-intensity map. [Default: -25.0]

max_reflectance The high end of the reflectance-to-intensity map. [Default: 5.0]

7.2.28 readers.sbet

The SBET reader read from files in the SBET format, used for exchange data from interital
measurement units (IMUs). SBET files store angles as radians, but by default this reader
converts all angle-based measurements to degrees. Set angles_as_degrees to false to
disable this conversion.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

"sbetfile.sbet",

96 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"output.las"

Options

filename File to read from [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

angles_as_degrees Convert all angles to degrees. If false, angles are read as radians. [Default:
true]

7.2.29 readers.sqlite

The SQLite Reader allows you to read data stored in a SQLite database (https://sqlite.org/)
using a scheme that PDAL wrote using the writers.sqlite (page 135) writer. The SQLite driver
stores data in tables that contain rows of patches. Each patch contains a number of spatially
contiguous points

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example
[
{

"type":"readers.sqglite",

"connection":"inputfile.sglite",

"query":"SELECT b.schema, l.cloud, l.block_id, 1l.num_points,
—1.bbox, l.extent, l.points, b.cloud\r\n FROM, ,
—simple_blocks 1, simple_cloud b\r\n WHERE 1.
—cloud = b.cloud and l.cloud in (1) \r\n order by,
—1l.cloud"

b
{
"type":"writers.las",

"filename":"outputfile.las"

7.2. Readers 97

https://sqlite.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

query SQL statement that selects a schema XML, cloud id, bbox, and extent [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

7.2.30 readers.slpk

Scene Layer Packages (SLPK) (https://github.com/Esri/i3s-
spec/blob/master/format/Indexed%203d%?20Scene %20Layer%20Format%?20Specification.md#_8_1)
is a specification created by Esri as a format for their 3D Scene Layer and scene services.

SLPK is a format that allows you to package all the necessary /35 (page 66) files together and

store them locally rather than find information through REST.

Example

This example will unarchive the slpk file, store it in a temp directory, and traverse it. The data
will be output to a las file. This is done through PDAL’s command line interface or through the
pipeline.

[

"type": "readers.slpk",
"filename": "PDAL/test/data/i3s/SMALL_AUTZEN_LAS_All.slpk",
"bounds": " ([-123.075542,-123.06196], [44.049719,44.06278])"

pdal traslate PDAL/test/data/i3s/SMALL_AUTZEN_LAS_All.slpk \
autzen.las \
——readers.slpk.bounds=" ([-123.075542,-123.06196], [44.049719, 44.
~06278])" " "

98 Chapter 7. Drivers

https://github.com/Esri/i3s-spec/blob/master/format/Indexed%203d%20Scene%20Layer%20Format%20Specification.md#_8_1

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

filename SLPK file must have a file extension of .slpk. Example: pdal translate
/PDAL/test/data/i3s/SMALL_AUTZEN_LAS_ALL.slpk output.las

count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

bounds The bounds refers to the extents of the resource in X, Y, Z coordinates with the Z
dimension being optional. This must be input as a string.

Example:readers.slpk.bounds=" ([xmin, xmax], [ymin, ymax], [zmin,

zmax])"

dimensions Comma-separated list of dimensions that should be read. Specify the Esri name,
rather than the PDAL dimension name.

Esri Pdal

INTENSITY Intensity
CLASS_CODE | ClassFlags
FLAGS Flag

RETURNS NumberOfReturns

USER_DATA UserData
POINT_SRC_ID | PointSourceld

GPS_TIME GpsTime
SCAN_ANGLE | ScanAngleRank
RGB Red
Example: ——readers.slpk.dimensions="rgb, intensity"

min_density and max_density This is the range of density of the points in the nodes that will
be selected during the read. The density of a node is calculated by the vertex count
divided by the effective area of the node. Nodes do not have a uniform density across
depths in the tree, so some sections may be more or less dense than others. Default
values for these parameters will select all leaf nodes (the highest resolution).

Example: ——readers.slpk.min_density=2
——readers.slpk.max_density=2.5

7.2.31 readers.terrasolid

The Terrasolid Reader loads points from Terrasolid (https://www.terrasolid.com/home.php)
files (.bin). It supports boths Terrasolid format 1 and format 2.

7.2. Readers 929

https://www.terrasolid.com/home.php

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example
[

{
"type":"readers.terrasolid",
"filename":"autzen.bin"

br

{

"type":"writers.las",
"filename": "output.las"
}
]
Options

filename Input file name [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

7.2.32 readers.text

The text reader reads data from ASCII text files. Each point is represented in the file as a
single line. Each line is expected to be divided into a number of fields by a separator. Each
field represents a value for a point’s dimension. Each value needs to be formatted
(http://en.cppreference.com/w/cpp/string/basic_string/stof) properly for C++ language
double-precision values.

The text reader expects a header line to indicate the dimensions are in each subsequent line.
There are two types of header lines.

Quoted dimension names

When the first character of the header is a double quote, each dimension name is assumed to be
surrounded by double quotes. Any text following a quoted dimension name and the start of the
next dimension name is ignored. The separator (page 102) option can’t be used with quoted
dimension names.

100 Chapter 7. Drivers

http://en.cppreference.com/w/cpp/string/basic_string/stof

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Unquoted dimension names

The first non alpha-numeric character encountered is treated as a separator between dimension
names. The separator in the header line can be overridden by the separator (page 102) option.

Each line in the file must contain the same number of fields as indicated by dimension names
in the header. Spaces are generally ignored in the input unless used as a separator. When a
space character is used as a separator, any number of consecutive spaces are treated as single
space and leading/trailing spaces are ignored.

Blank lines are ignored after the header line is read.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example Input File

This input file contains X, Y and Z value for 10 points.

X,Y, 7

289814.15,4320978.61,170.76
289814.64,4320978.84,170.76
289815.12,4320979.06,170.75
289815.60,4320979.28,170.74
289816.08,4320979.50,170.68
289816.56,4320979.71,170.66
289817.03,4320979.92,170.63
289817.53,4320980.16,170.62
289818.01,4320980.38,170.61
289818.50,4320980.59,170.58

Example #1

"type":"readers.text",
"filename":"inputfile.txt"

7.2. Readers 101

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"writers.text",
"filename":"outputfile.txt"

Example #2

This reads the data in the input file as Red, Green and Blue instead of as X, Y and Z.

[

"type":"readers.text",
"filename":"inputfile.txt",
"header":"Red, Green, Blue",
"skip":1

"type":"writers.text",
"filename":"outputfile.txt"

Options

filename text file to read [Required]
count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

header String to use as the file header. All lines in the file are assumed to be records
containing point data unless skipped with the skip (page 102) option. [Default: None]

separator Separator character to override that found in header line. [Default: None]

skip Number of lines to ignore at the beginning of the file. [Default: 0]

7.2.33 readers.tiledb

Implements TileDB (https://tiledb.io) 1.4.1+ storage.

102 Chapter 7. Drivers

https://tiledb.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Example

"type":"readers.tiledb",
"array name":"my_ array"

"type":"writers.las",
"filename":"outputfile.las"

Options

array_name TileDB (https://tiledb.i0) array to read from. [Required]
config_file TileDB (https://tiledb.io) configuration file [Optional]
chunk_size Size of chunks to read from TileDB array [Optional]
stats Dump query stats to stdout [Optional]

bbox3d TileDB subarray to read in format ([minx, maxx], [miny, maxy], [minz, maxz])
[Optional]

count Maximum number of points to read. [Default: unlimited]

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

7.2.34 readers.tindex

A GDAL tile index (http://www.gdal.org/gdaltindex.html) is an OGR
(http://gdal.org/ogr/)-readable data source of boundary information. PDAL provides a similar

7.2. Readers 103

https://tiledb.io
https://tiledb.io
http://www.gdal.org/gdaltindex.html
http://gdal.org/ogr/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

concept for PDAL-readable point cloud data. You can use the findex (page 37) application to
generate tile index files in any format that OGR (http://gdal.org/ogt/) supports writing. Once
you have the tile index, you can then use the tindex reader to automatically merge and query
the data described by the tiles.

Default Embedded Stage
This stage is enabled by default

Basic Example

Given a tile index that was generated with the following scenario:

pdal tindex index.sqglite \
"/Users/hobu/dev/git/pdal/test/data/las/interesting.las" \
-f "SQLite" \
——lyr_name "pdal" \
——t_srs "EPSG:4326"

Use the following pipeline (page 45) example to read and automatically merge the data.

[

"type":"readers.tindex",

"filter srs":"+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75_
—t+lon_0=-120.5 +x_0=399999.9999999999 +y_0=0 +ellps=GRS80 +units=ft_,
—+no_defs",

"filename":"index.sqglite",

"where":"location LIKE \'%nteresting.las%\'",

"wkt" :"POLYGON ((635629.85000000 848999.70000000, 635629.
—~85000000 853535.43000000, 638982.55000000 853535.43000000, 638982.
55000000 848999.70000000, 635629.85000000 848999.70000000))"

}I

{
"type":"writers.las",
"filename":"outputfile.las"

Options

filename OGROpen’able raster file to read [Required]

count Maximum number of points to read. [Default: unlimited]

104 Chapter 7. Drivers

http://gdal.org/ogr/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

override_srs Spatial reference to apply to the data. Overrides any SRS in the input itself. Can
be specified as a WKT, proj.4 or EPSG string. [Default: none]

lyr_name The OGR layer name for the data source to use to fetch the tile index information.

srs_column The column in the layer that provides the SRS information for the file. Use this if
you wish to override or set coordinate system information for files.

tindex_name The column name that defines the file location for the tile index file. [Default:
location]

sql OGR SQL (http://www.gdal.org/ogr_sql.html) to use to define the tile index layer.

bounds A 2D box to pre-filter the tile index. If it is set, it will override any wk? (page 105)
option.

wkt A geometry to pre-filter the tile index using OGR.

t_srs Reproject the layer SRS, otherwise default to the tile index layer’s SRS. [Default:
“EPSG:4326”]

filter_srs Transforms any wkz (page 105) or bounds (page 105) option to this coordinate
system before filtering or reading data. [Default: “EPSG:43267]

where OGR SQL (http://www.gdal.org/ogr_sql.html) filter clause to use on the layer. It only
works in combination with tile index layers that are defined with /yr_name (page 105)

dialect OGR SQL (http://www.gdal.org/ogr_sql.html) dialect to use when querying tile index
layer [Default: OGRSQL]

readers.bpf (page 54) Read BPF files encoded as version 1, 2, or 3. BPF is an NGA
specification for point cloud data.

readers.buffer (page 55) Special stage that allows you to read data from your own PointView
rather than fetching data from a specific reader.

readers.ept (page 55) Used for reading Entwine Point Tile (https://entwine.io) format.
readers.e57 (page 58) Read point clouds in the ES7 format.

readers.faux (page 59) Used for testing pipelines. It does not read from a file or database, but
generates synthetic data to feed into the pipeline.

readers.gdal (page 61) Read GDAL readable raster data sources as point clouds.
readers.geowave (page 62) Read point cloud data from Accumulo.

readers.i3s (page 66) Read data stored in the Esri I3S format. The data is read from an
appropriate server.

readers.ilvis2 (page 67) Read from files in the ILVIS2 format.

readers.las (page 69) Read ASPRS LAS versions 1.0 - 1.4. Does not support point formats
containing waveform data. LASzip support is also enabled through this driver if LASzip
or LAZperf are found during compilation.

7.2. Readers 105

http://www.gdal.org/ogr_sql.html
http://www.gdal.org/ogr_sql.html
http://www.gdal.org/ogr_sql.html
https://entwine.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

readers.matlab (page 71) Read point cloud data from MATLAB .mat files where dimensions
are stored as arrays in a MATLAB struct.

readers.mbio (page 73) Read sonar bathymetry data from formats supported by the
MB-System library.

readers.memoryview (page 72) Read data from memory where dimension data is arranged in
rows. For use only with the PDAL API.

readers.mrsid (page 74) Read data compressed by the MrSID 4.0 LiDAR Compressor.
Requires the LizardTech Lidar_ DSDK.

readers.nitf (page 75) Read point cloud data (LAS or LAZ) wrapped in NITF 2.1 files.
readers.numpy (page 77) Read point cloud data from Numpy . npy files.

readers.oci (page 81) Read data from Oracle point cloud databases.

readers.optech (page 83) Read Optech Corrected Sensor Data (.csd) files.

readers.pcd (page 83) Read files in the PCD format.

readers.pgpointcloud (page 84) Read point cloud data from a PostgreSQL database with the
PostgreSQL Pointcloud extension enabled.

readers.ply (page 85) Read points and vertices from either ASCII or binary PLY files.
readers.pts (page 86) Read data from Leica Cyclone PTS files.

readers.qfit (page 87) Read data in the QFIT format originated for NASA’s Airborne
Topographic Mapper project.

readers.rxp (page 94) Read data in the RXP format, the in-house streaming format used by
RIEGL. The reader requires a copy of RiVLib during compilation.

readers.rdb (page 88) Read data in the RDB format, the in-house database format used by
RIEGL. The reader requires a copy of rdblib during compilation and usage.

readers.sbet (page 96) Read the SBET format.

readers.sqlite (page 97) Read data stored in a SQLite database.
readers.slpk (page 98) Read data stored in an Esri SLPK file.
readers.terrasolid (page 99) TerraSolid Reader

readers.text (page 100) Read point clouds from ASCII text files.
readers.tiledb (page 102) Read point cloud data from a TileDB instance.

readers.tindex (page 103) The tindex (tile index) reader allows you to automatically merge
and query data described in tile index files that have been generated using the PDAL
tindex command.

106 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

7.3 Writers

Writers consume data provided by Readers (page 53). Some writers can consume any
dimension type, while others only understand fixed dimension names.

Note: PDAL predefined dimension names can be found in the dimension registry: Dimensions
(page 251)

7.3.1 writers.bpf

BPF is an NGA specification (https://nsgreg.nga.mil/doc/view 7i=4202) for point cloud data.
The PDAL BPF Writer only supports writing of version 3 BPF format files.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example
[
{
"type":"readers.bpf",
"filename":"inputfile.las"
by
{
"type":"writers.bpf",
"filename":"outputfile.bpf"
}
]
Options

filename BPF file to write. The writer will accept a filename containing a single placeholder
character (‘#’). If input to the writer consists of multiple PointViews, each will be written

7.3. Writers 107

https://nsgreg.nga.mil/doc/view?i=4202

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

to a separate file, where the placeholder will be replaced with an incrementing integer. If
no placeholder is found, all PointViews provided to the writer are aggregated into a
single file for output. Multiple PointViews are usually the result of using filters.splitter
(page 227), filters.chipper (page 221) or filters.divider (page 224). [Required]

compression This option can be set to true to cause the file to be written with Zlib
compression as described in the BPF specification. [Default: false]

format Specifies the format for storing points in the file. [Default: dim]

* dim: Dimension-major (non-interleaved). All data for a single dimension are stored
contiguously.

* point: Point-major (interleaved). All data for a single point are stored contiguously.

* byte: Byte-major (byte-segregated). All data for a single dimension are stored
contiguously, but bytes are arranged such that the first bytes for all points are stored
contiguously, followed by the second bytes of all points, etc. See the BPF
specification for further information.

bundledfile Path of file to be written as a bundled file (see specification). The path part of the
filespec is removed and the filename is stored as part of the data. This option can be
specified as many times as desired.

header_data Base64-encoded data that will be decoded and written following the standard
BPF header.

coord_id The coordinate ID (UTM zone) of the data. Southern zones take negative values. A
value of 0 indicates cartesian instead of UTM coordinates. A value of ‘auto’ will attempt
to set the UTM zone from a suitable spatial reference, or set to 0 if no such SRS is set.
[Default: 0]

scale_x, scale_y, scale_z Scale to be divided from the X, Y and Z nominal values,
respectively, after the offset has been applied. The special value “auto” can be specified,
which causes the writer to select a scale to set the stored values of the dimensions to
range from [0, 2147483647]. [Default: .01]

Note: written value = (nominal value - offset) / scale.

offset_x, offset_y, offset_z Offset to be subtracted from the X, Y and Z nominal values,
respectively, before the value is scaled. The special value “auto” can be specified, which
causes the writer to set the offset to the minimum value of the dimension. [Default: auto]

Note: written value = (nominal value - offset) / scale.

Note: Because BPF data is always stored in UTM, the XYZ offsets are set to “auto” by
default. This is to avoid truncation of the decimal digits (which may occur with offsets
left at 0).

108 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

output_dims If specified, limits the dimensions written for each point. Dimensions are listed
by name and separated by commas. X, Y and Z are required and must be explicitly listed.

7.3.2 writers.ept_addon

The EPT Addon Writer supports writing additional dimensions to Entwine Point Tile
(https://entwine.io/entwine-point-tile.html) datasets. The EPT addon writer may only be used
in a pipeline with an EPT reader (page 55), and it creates additional attributes for an existing
dataset rather than creating a brand new one.

The addon dimensions created by this writer are stored independently from the corresponding
EPT dataset, therefore write-access to the EPT resource itself is not required to create and use
addon dimensions.

Default Embedded Stage
This stage is enabled by default

Example

This example downloads the Autzen dataset (10M points) and runs the SMRF filter (page 185),
which populates the Classification dimension with ground values, and writes the
resulting attribute to an EPT addon dataset on the local filesystem.

[

"type": "readers.ept",
"filename": "http://na.entwine.io/autzen/ept. json"

bo
{

"type": "filters.assign",

"assignment": "Classification[:]=0"
}o
{

"type": "filters.smrf"
b
{

"type": "writers.ept_addon",

"addons": { "~/entwine/addons/autzen/smrf": "Classification"

—~}

7.3. Writers 109

https://entwine.io/entwine-point-tile.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

And here is a follow-up example of reading this dataset with the EPT reader (page 55) with the
created addon overwriting the Classification value. The output is then written to a
single file with the LAS writer (page 117).

[

"type": "readers.ept",
"filename": "http://na.entwine.io/autzen/ept.json",
"addons": { "Classification": "~/entwine/addons/autzen/smrf"

"type": "writers.las",
"filename": "autzen-ept-smrf.las"

This is an example of using multiple mappings in the addons option to apply a new color
scheme with filters.colorinterp (page 144) mapping the Red, Green, and Blue dimensions to
new values.

"type": "readers.ept",
"filename": "http://na.entwine.io/autzen/ept.json"
br
{
"type": "filters.colorinterp"
} 4
{
"type": "writers.ept_addon",
"addons": {
"~/entwine/addons/autzen/interp/Red": "Red",
"~/entwine/addons/autzen/interp/Green": "Green",
"~/entwine/addons/autzen/interp/Blue": "Blue"

The following pipeline will read the data with the new colors:

[

"type": "readers.ept",
"filename": "http://na.entwine.io/autzen/ept.json",
"addons": {

"Red": "~/entwine/addons/autzen/interp/Red",

110 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"Green": "~/entwine/addons/autzen/interp/Green",
"Blue": "~/entwine/addons/autzen/interp/Blue"
}
}o
{
"type": "writers.las",
"filename": "autzen-ept-interp.las"

Options

addons A JSON object whose keys represent output paths for each addon dimension, and
whose corresponding values represent the attributes to be written to these addon
dimensions. [Required]

Note: The addons option is reversed between the EPT reader and addon-writer: in each case,
the right-hand side represents an assignment to the left-hand side. In the writer, the dimension
value is assigned to an addon path. In the reader, the addon path is assigned to a dimension.

threads Number of worker threads used to write EPT addon data. A minimum of 4 will be
used no matter what value is specified.

7.3.3 writers.e57

The ES7 Writer supports writing to E57 files.

The writer supports E57 files with Cartesian point clouds.

Note: ES57 files can contain multiple point clouds stored in a single file. The writer will only
write a single cloud per file.

Note: Spherical format points are not supported.

Note: The E57 cartesianInvalidState dimension is mapped to the Omit PDAL dimension. A
range filter can be used to filter out the invalid points.

7.3. Writers 111

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Dynamic Plugin

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Example
[
{
"type":"readers.las",
"filename":"inputfile.las"
} r
{
"type":"writers.eb7",
"filename":"outputfile.eb57",
"doublePrecision":false
}
]
Options

filename ES57 file to write [Required]

doublePrecision Use double precision for storage (false by default).

7.3.4 writers.gdal

The GDAL writer creates a raster from a point cloud using an interpolation algorithm. Output
is produced using GDAL (http://gdal.org) and can use any driver that supports creation of
rasters (http://www.gdal.org/formats_list.html). A data_type (page 114) can be specified for
the raster (double, float, int32, etc.). If no data type is specified, the data type with the largest
range supported by the driver is used.

The technique used to create the raster is a simple interpolation where each point that falls
within a given radius (page 114) of a raster cell center potentially contributes to the raster’s
value. If no radius is provided, it is set to the product of the resolution (page 114) and the
square root of two. If a circle with the provided radius doesn’t encompass the entire cell, it is

112 Chapter 7. Drivers

http://gdal.org
http://www.gdal.org/formats_list.html
http://www.gdal.org/formats_list.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

possible that some points will not be considered at all, including those that may be within the
bounds of the raster cell.

The GDAL writer creates rasters using the data specified in the dimension (page 115) option
(defaults to Z). The writer creates up to six rasters based on different statistics in the output
dataset. The order of the layers in the dataset is as follows:

min Give the cell the minimum value of all points within the given radius.
max Give the cell the maximum value of all points within the given radius.
mean Give the cell the mean value of all points within the given radius.

idw Cells are assigned a value based on Shepard’s inverse distance weighting
(https://en.wikipedia.org/wiki/Inverse_distance_weighting) algorithm, considering all
points within the given radius.

count Give the cell the number of points that lie within the given radius.

stdev Give the cell the population standard deviation of the points that lie within the given
radius.

If no points fall within the circle about a raster cell, a secondary algorithm can be used to
attempt to provide a value after the standard interpolation is complete. If the window_size
(page 115) option is non-zero, the values of a square of rasters surrounding an empty cell is
applied using inverse distance weighting of any non-empty cells. The value provided for
window_size is the maximum horizontal or vertical distance that a donor cell may be in order
to contribute to the subject cell (A window_size of 1 essentially creates a 3x3 array around the
subject cell. A window_size of 2 creates a 5x5 array, and so on.)

Cells that have no value after interpolation are given a value specified by the nodata (page 114)
option.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Basic Example

This pipeline reads the file autzen_trim.las and creates a Geotiff dataset called outputfile.tif.
Since output_type isn’t specified, it creates six raster bands (“min”, “max”, “mean”, “idx”,

7.3. Writers 113

https://en.wikipedia.org/wiki/Inverse_distance_weighting

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

“count” and “stdev”) in the output dataset. The raster cells are 10x10 and the radius used to
locate points whose values contribute to the cell value is 14.14.

[
"pdal/test/data/las/autzen_trim.las",

{

"resolution": 10,
"radius": 14.14,
"filename":"outputfile.tif"

Options

filename Name of output file. The writer will accept a filename containing a single
placeholder character (#). If input to the writer consists of multiple PointViews, each
will be written to a separate file, where the placeholder will be replaced with an
incrementing integer. If no placeholder is found, all PointViews provided to the writer
are aggregated into a single file for output. Multiple PointViews are usually the result of
using filters.splitter (page 227), filters.chipper (page 221) or filters.divider
(page 224).[Required]

resolution Length of raster cell edges in X/Y units. [Required]

radius Radius about cell center bounding points to use to calculate a cell value. [Default:
resolution (page 114) * sqrt(2)]

power Exponent of the distance when computing IDW. Close points have higher significance
than far points. [Default: 1.0]

gdaldriver GDAL code of the GDAL driver (http://www.gdal.org/formats_list.html) to use to
write the output. [Default: “GTiff”]

gdalopts A list of key/value options to pass directly to the GDAL driver. The format is
name=value,name=value,... The option may be specified any number of times.

Note: The INTERLEAVE GDAL driver option is not supported. writers.gdal always
uses BAND interleaving.

data_type The data type (page 255) to use for the output raster. Many GDAL drivers only
support a limited set of output data types. [Default: depends on the driver]

nodata The value to use for a raster cell if no data exists in the input data with which to
compute an output cell value. [Default: depends on the data_type (page 114). -9999 for
double, float, int and short, 9999 for unsigned int and unsigned short, 255 for unsigned
char and -128 for char]

114 Chapter 7. Drivers

http://www.gdal.org/formats_list.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

output_type A comma separated list of statistics for which to produce raster layers. The
supported values are “min”, “max”, “mean”, “idw”, “count”, “stdev” and “all”. The
option may be specified more than once. [Default: “all”]

window_size The maximum distance from a donor cell to a target cell when applying the
fallback interpolation method. See the stage description for more information. [Default:
0]

dimension A dimension name to use for the interpolation. [Default: “Z”]

bounds The bounds of the data to be written. Points not in bounds are discarded. The format
is ([minx, maxx],[miny,maxy]). [Optional]

origin_x X origin (lower left corner) of the grid. [Default: None]
origin_y Y origin (lower left corner) of the grid. [Default: None]
width Number of cells in the X direction. [Default: None]

height Number of cells in the Y direction. [Default: None]

Note: You may use the ‘bounds’ option, or ‘origin_x’, ‘origin_y’, ‘width’ and ‘height’, but
not both.

7.3.5 writers.geowave

The GeoWave writer uses GeoWave (https://github.com/locationtech/geowave) to write to
Accumulo. GeoWave entries are stored using EPSG:4326 (http://epsg.i0/4326/).

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example

"type":"readers.qgfit",
"filename":"inputfile.gi",
"flip coordinates":"false",
"scale_z":"1.0"

"type":"writers.geowave",

7.3. Writers 115

https://github.com/locationtech/geowave
http://epsg.io/4326/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"zookeeper url":"zookeeperl:2181, zookeeper2:2181,
—~zookeeper3:2181",

"instance_name": "GeoWave",

"username" : "user",

"password":"pass",

"table_namespace":"PDAL_Table",

"feature_type name":"PDAL_Point",

"data_adapter":"FeatureCollectionDataAdapter",

"points_per_ entry":"5000u"

Options
zookeeper_url The comma-delimited URLSs for all zookeeper servers, this will be directly
used to instantiate a ZookeeperInstance. [Required]

instance_name The zookeeper instance name, this will be directly used to instantiate a
ZookeeperInstance. [Required]

username The username for the account to establish an Accumulo connector. [Required]
password The password for the account to establish an Accumulo connector. [Required]
table_namespace The table name to be used when interacting with GeoWave. [Required]

feature_type_name The feature type name to be used when ineracting GeoWave. [Default:
PDAL_Point]

data_adapter FeatureCollectionDataAdapter stores multiple points per Accumulo entry.
FeatureDataAdapter stores a single point per Accumulo entry. [Default:
FeatureCollectionDataAdapter]

points_per_entry Sets the maximum number of points per Accumulo entry when using
FeatureCollectionDataAdapter. [Default: 5000u]

7.3.6 writers.gltf

GLTF is a file format specification (https://www.khronos.org/gltf/) for 3D graphics data. If a
mesh has been generated for a PDAL point view, the GLTF Writer will produce simple output
in the GLTF format. PDAL does not currently support many of the attributes that can be found
in a GLTF file. This writer creates a binary GLTF.

Default Embedded Stage

116 Chapter 7. Drivers

https://www.khronos.org/gltf/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This stage is enabled by default

Example

"infile.las",

{

"type": "filters.poisson",
"depth": 12

"type":"writers.gltf",
"filename":"output.glb",
"red": 0.8,

"metallic": 0.5

Options

filename Name of the GLTF (.glb) file to be written. [Required]

metallic The metallic factor of the faces. [Default: 0]

roughness The roughness factor of the faces. [Default: 0]

red The red component of the color applied to the faces. [Default: 0]
green The green component of the color applied to the faces. [Default: 0]
blue The blue component of the color applied to the faces. [Default: 0]
alpha The alpha component to be applied to the faces. [Default: 1.0]

double_sided Whether the faces are colored on both sides, or just the side visible from the
initial observation point (positive normal vector). [Default: false]

7.3.7 writers.las

The LAS Writer supports writing to LAS format
(http://asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html) files,
the standard interchange file format for LIDAR data.

7.3. Writers 117

http://asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Warning: Scale/offset are not preserved from an input LAS file. See below for
information on the scale/offset options and the forward (page 119) option.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

VLRs

VLRs can be created by providing a JSON node called virs with objects containing user_id and
data items.

[

"type":"readers.las",
"filename":"inputfile.las"

"type":"writers.las",
"wvlrs": [{
"description": "A description under 32 bytes",
"record_id": 42,
"user_ id": "hobu",
"data": "dGhpcyBpcyBzb211IHR1eHQ="
bo
{
"description": "A description under 32 bytes",
"record id": 43,
"user_id": "hobu",
"data": "dGhpcyBpcyBzb21llIGlvcmUgdGV4dA=="
b1

"filename":"outputfile.las"

118 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example
[
{
"type":"readers.las",
"filename":"inputfile.las"
}o
{
"type":"writers.las",
"filename":"outputfile.las"
}
]
Options

filename Output filename. The writer will accept a filename containing a single placeholder
character (#). If input to the writer consists of multiple PointViews, each will be written
to a separate file, where the placeholder will be replaced with an incrementing integer. If
no placeholder is found, all PointViews provided to the writer are aggregated into a
single file for output. Multiple PointViews are usually the result of using filters.splitter
(page 227), filters.chipper (page 221) or filters.divider (page 224). [Required]

forward List of header fields whose values should be preserved from a source LAS file. The
option can be specified multiple times, which has the same effect as listing values
separated by a comma. The following values are valid: major_version,
minor_version,dataformat_id, filesource_id, global_encoding,
project_id, system_id, software_id, creation_doy, creation_year,
scale_x, scale_y, scale_z,offset_x,offset_y, offset_z. In addition,
the special value header can be specified, which is equivalent to specifying all the
values EXCEPT the scale and offset values. Scale and offset values can be forwarded as
a group by using the special values scale and of fset respectively. The special value
all is equivalent to specifying header, scale, of fset and v1r (see below). If a
header option is specified explicitly, it will override any forwarded header value. If a
LAS file is the result of multiple LAS input files, the header values to be forwarded must
match or they will be ignored and a default will be used instead.

VLRs can be forwarded by using the special value v1r. VLRs containing the following
User IDs are NOT forwarded: LASF_Projection, liblas, laszip encoded.
VLRs with the User ID LASF_ Spec and a record ID other than O or 3 are also not
forwarded. These VLRs are known to contain information regarding the formatting of
the data and will be rebuilt properly in the output file as necessary. Unlike header values,
VLRs from multiple input files are accumulated and each is written to the output file.
Forwarded VLRs may contain duplicate User ID/Record ID pairs.

minor_version All LAS files are version 1, but the minor version (0 - 4) can be specified with

7.3. Writers 119

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

this option. [Default: 2]

software_id String identifying the software that created this LAS file. [Default: PDAL
version num (build num)]”

creation_doy Number of the day of the year (January 1 == 0, Dec 31 == 365) this file is being
created.

creation_year Year (Gregorian) this file is being created.

dataformat_id Controls whether information about color and time are stored with the point
information in the LAS file. [Default: 3]

¢ 0 == no color or time stored
¢ | == time is stored
e 2 == color is stored

¢ 3 == color and time are stored

4 [Not Currently Supported]

5 [Not Currently Supported]
* 6 ==time is stored (version 1.4+ only)
* 7 ==time and color are stored (version 1.4+ only)
* 8 == time, color and near infrared are stored (version 1.4+ only)
* 9 [Not Currently Supported]
* 10 [Not Currently Supported]
system_id String identifying the system that created this LAS file. [Default: “PDAL”]

a_srs The spatial reference system of the file to be written. Can be an EPSG string (e.g.
“EPSG:26910”) or a WKT string. [Default: Not set]

global_encoding Various indicators to describe the data. See the LAS documentation. Note
that PDAL will always set bit four when creating LAS version 1.4 output. [Default: 0]

project_id UID reserved for the user [Default: Nil UID]

compression Set to “lazperf” or “laszip” to apply compression to the output, creating a LAZ
file instead of an LAS file. “lazperf” selects the LazPerf compressor and “laszip” (or
“true”) selects the LasZip compressor. PDAL must have been built with support for the
requested compressor. [Default: “none”]

scale_x, scale_y, scale_z Scale to be divided from the X, Y and Z nominal values,
respectively, after the offset has been applied. The special value auto can be specified,
which causes the writer to select a scale to set the stored values of the dimensions to
range from [0, 2147483647]. [Default: .01]

Note: written value = (nominal value - offset) / scale.

120 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

offset_x, offset_y, offset_z Offset to be subtracted from the X, Y and Z nominal values,
respectively, before the value is scaled. The special value aut o can be specified, which
causes the writer to set the offset to the minimum value of the dimension. [Default: 0]

Note: written value = (nominal value - offset) / scale.

filesource_id The file source id number to use for this file (a value between 0 and 65535 - 0
implies “unassigned”) [Default: 0]

discard_high_return_numbers If true, discard all points with a return number greater than
the maximum supported by the point format (5 for formats 0-5, 15 for formats 6-10).
[Default: false]

extra_dims Extra dimensions to be written as part of each point beyond those specified by the
LAS point format. The format of the option is <dimension_name>=<type> [,
... 1. Any valid PDAL rype (page 255) can be specified.

The special value a1l can be used in place of a dimension/type list to request that all
dimensions that can’t be stored in the predefined LAS point record get added as extra
data at the end of each point record.

PDAL writes an extra bytes VLR (User ID: LASF_Spec, Record ID: 4) when extra dims
are written. The VLR describes the extra dimensions specified by this option. Note that
reading of this VLR is only specified for LAS version 1.4, though some systems will
honor it for earlier file formats. The LAS reader (page 69) requires the option use_eb_vlr
in order to read the extra bytes VLR for files written with 1.1 - 1.3 LAS format.

Setting —verbose=Info will provide output on the names, types and order of dimensions
being written as part of the LAS extra bytes.

pdal_metadata Write two VLRs containing JSON (http://www.json.org/) output with both the
Metadata (page 414) and Pipeline (page 45) serialization. [Default: false]

7.3.8 writers.matlab

The Matlab Writer supports writing Matlab .mat files.

The produced files has a single variable, PDAL, an array struct.

7.3. Writers 121

http://www.json.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Pa Variables - PDAL

| PDAL |
1x1 struct with 16 fields
Field & Value
Hx 1065x1 double
Hy 1065x1 double
Hz 1065x1 double
H Intensity 1065x1 uintlé
HH ReturnNumber 1065x1 uint8

HH NumberOfReturns 1065x1 uint8
EE| ScanDirectionFlag 1065x1 uint8
H EdgeOfFlightLine 1065x1 uint8

EE| Classification 1065x1 uint8

H ScanAngleRank 1065x1 single
HH UserData 1065x1 uint8

HH PointSourceld 1065x1 uintlé
EE| GpsTime 1065x1 double
H Red 1065x1 uintlé
EE| Green 1065x1 uintlé
H Blue 1065x1 uint16

Note: The Matlab writer requires the Mat-File API from MathWorks, and it must be explicitly
enabled at compile time with the BUTLD_PLUGIN_MATLAB=ON variable

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example

"type":"readers.las",
"filename":"inputfile.las"

122 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"writers.matlab",
"output_dims":"X,Y,Z, Intensity",
"filename":"outputfile.mat"

Options

filename Output file name [Required]

output_dims A comma-separated list of dimensions to include in the output file. May also be
specified as an array of strings. [Default: all available dimensions]

struct Array structure name to read [Default: “PDAL”]

7.3.9 writers.nitf

The NITF (http://en.wikipedia.org/wiki/National Imagery_Transmission_Format) format is a
US Department of Defense format for the transmission of imagery. It supports various formats
inside a generic wrapper.

Note: LAS inside of NITF is widely supported by software that uses NITF for point cloud
storage, and LAZ is supported by some softwares. No other content type beyond those two is
widely supported as of January of 2016.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

Example One

7.3. Writers 123

http://en.wikipedia.org/wiki/National_Imagery_Transmission_Format

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"readers.las",
"filename":"inputfile.las"

"type":"writers.nitf",

"compression":"laszip",
"idatim":"20160102220000",

"forward":"all",

"acftb":"SENSOR_ID:LIDAR, SENSOR_ID_TYPE:LILN",
"filename":"outputfile.ntf"

Example Two
[

"type":"readers.las",
"filename":"inputfile.las"

"type":"writers.nitf",

"compression":"laszip",
"idatim":"20160102220000",

"forward":"all",
"acftb":"SENSOR_ID:LIDAR, SENSOR_ID_ TYPE:LILN",
"aimidb" :"ACQUISITION_DATE:20160102235900",
"filename":"outputfile.ntf"

Options

filename NITF file to write. The writer will accept a filename containing a single placeholder
character (‘#’). If input to the writer consists of multiple PointViews, each will be
written to a separate file, where the placeholder will be replaced with an incrementing
integer. If no placeholder is found, all PointViews provided to the writer are aggregated
into a single file for output. Multiple PointViews are usually the result of using
Silters.splitter (page 227), filters.chipper (page 221) or filters.divider (page 224).

clevel File complexity level (2 characters) [Default: 03]
stype Standard type (4 characters) [Default: BF01]

124 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

ostaid Originating station ID (10 characters) [Default: PDAL]

ftitle File title (80 characters) [Default: <spaces>]

fsclas File security classification (‘T’, *S’, ‘C’, ‘R’ or ‘U’) [Default: U]
oname Originator name (24 characters) [Default: <spaces>]

ophone Originator phone (18 characters) [Default: <spaces>]

fsctlh File control and handling (2 characters) [Default: <spaces>]
fsclsy File classification system (2 characters) [Default: <spaces>]

idatim Image date and time (format: ‘CCYYMMDDhhmmss’). Required. [Default:
AIMIDB.ACQUISITION_DATE if set or <spaces>]

iid2 Image identifier 2 (80 characters) [Default: <spaces>]
fscltx File classification text (43 characters) [Default: <spaces>]

aimidb Comma separated list of name/value pairs to complete the AIMIDB (Additional
Image ID) TRE record (format name:value). Required: ACQUISITION_DATE, will
default to IDATIM value. [Default: NITF defaults]

acftb Comma separated list of name/value pairs to complete the ACFTB (Aircraft
Information) TRE record (format name:value). Required: SENSOR_ID,
SENSOR_ID_TYPE [Default: NITF defaults]

7.3.10 writers.null

The null writer discards its input. No point output is produced when using a null writer.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

"type":"readers.las",

7.3. Writers

125

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"filename":"inputfile.las"

"type":"filters.hexbin"

"type":"writers.null"
]

When used with an option that forces metadata output, like —pipeline-serialization, this pipeline
will create a hex boundary for the input file, but no output point data file will be produced.

Options

The null writer discards all passed options.

7.3.11 writers.oci

The OCI writer is used to write data to Oracle point cloud
(http://docs.oracle.com/cd/B28359_01/appdev.111/b28400/sdo_pc_pkg_ref.htm) databases.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example

"type":"readers.las",
"filename":"inputfile.las"
}I
{
"type":"writers.oci",

"connection":"grid/grid@localhost/orcl",
"block_table _name":"QFIT_BLOCKS",
"base_table_name":"QFIT_CLOUD",

"cloud column_ name":"CLOUD",
"srid":"4269",

"capacity":"5000"

126 Chapter 7. Drivers

http://docs.oracle.com/cd/B28359_01/appdev.111/b28400/sdo_pc_pkg_ref.htm

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

connection Oracle connection string to connect to database

is3d Should we use 3D objects (include the z dimension) for SDO_PC PC_EXTENT,
BLK_EXTENT, and indexing [Default: false]

solid Define the point cloud’s PC_EXTENT geometry gtype as (1,1007,3) instead of the
normal (1,1003,3), and use gtype 3008/2008 vs 3003/2003 for BLK_EXTENT geometry
values. [Default: false]

overwrite Wipe the block table and recreate it before loading data [Default: false]
verbose Wipe the block table and recreate it before loading data [Default: false]

srid The Oracle numerical SRID value to use for PC_EXTENT, BLK_EXTENT, and indexing
[Default: 0]

capacity The block capacity or maximum number of points a block can contain. [Default: 0]

stream_output_precision The number of digits past the decimal place for writing
floats/doubles to streams. This is used for creating the SDO_PC object and adding the
index entry to the USER_SDO_GEOM_METADATA for the block table. [Default: 8]

cloud_id The point cloud id that links the point cloud object to the entries in the block table.
[Default: -1]

block_table_name The table in which block data for the created SDO_PC will be placed.
[Default: “output”]

block_table_partition_column The column name for which ‘block_table_partition_value’
will be placed in the ‘block_table_name’.

block_table_partition_value Integer value to use to assing partition IDs in the block table.
Used in conjunction with ‘block_table_partition_column’ [Default: 0]

base_table_name The name of the table which will contain the SDO_PC object. [Default:
“hobu”]

cloud_column_name The column name in ‘base_table_name’ that will hold the SDO_PC
object. [Default: “CLOUD”]

base_table_aux_columns Quoted, comma-separated list of columns to add to the SQL that
gets executed as part of the point cloud insertion into the ‘base_table_name’ table.

base_table_aux_values Quoted, comma-separated values that correspond to
‘base_table_aux_columns’, entries that will get inserted as part of the creation of the

7.3. Writers 127

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

SDO_PC entry in the ‘base_table_name’ table.

base_table_boundary_column The SDO_GEOMETRY column in ‘base_table_name’ in
which to insert the WKT in ‘base_table_boundary_wkt’ representing a boundary for the
SDO_PC object. Note this is not the same as the ‘base_table_bounds’, which is just a
bounding box that is placed on the SDO_PC object itself.

base_table_boundary_wkt WKT, in the form of a string or a file location, to insert into the
SDO_GEOMTRY column defined by ‘base_table_boundary_column’.

pre_block_sql SQL, in the form of a string or file location, that is executed after the SDO_PC
object has been created but before the block data in ‘block_table_name’ are inserted into
the database.

pre_sql SQL, in the form of a string or file location, that is executed before the SDO_PC
object is created.

post_block_sql SQL, in the form of a string or file location, that is executed after the block
data in ‘block_table_name’ have been inserted

base_table_bounds A bounding box, given in the Oracle SRID specified in ‘srid’ to set on the
PC_EXTENT object of the SDO_PC. If none is specified, the cumulated bounds of all of
the block data are used.

pc_id Point Cloud id [Default: -1]

pack_ignored_fields Pack ignored dimensions out of the data buffer that is written [Default:
true]

do_trace turn on server-side binds/waits tracing — needs ALTER SESSION privs. [Default:
false]

stream_chunks Stream block data chunk-wise by the DB’s chunk size rather than as an entire
blob. [Default: false]

blob_chunk_count When streaming, the number of chunks per write to use [Default: 16]

scale_x, scale_y, scale_z / offset_x, offset_y, offset_z If ANY of these options are specified
the X, Y and Z dimensions are adjusted by subtracting the offset and then dividing the
values by the specified scaling factor before being written as 32-bit integers (as opposed
to double precision values). If any of these options is specified, unspecified
scale_<x,y,x> options are given the value of 1.0 and unspecified offset_<x,y,z> are given
the value of 0.0.

output_dims If specified, limits the dimensions written for each point. Dimensions are listed
by name and separated by commas.

tolerance Oracle geometry tolerance. X, Y, and Z dimensions are all currently specified as a
single value [Default: 0.05]

128 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

7.3.12 writers.ogr

The OGR Writer will create files of various vector formats
(http://www.gdal.org/ogr_formats.html) as supported by the OGR library. PDAL points are
generally stored as points in the output format, though PDAL will create multipoint objects
instead of point objects if the ‘multicount’ argument is set to a value greater than 1. Points can
be written with a single additional value in addition to location if ‘measure_dim’ specifies a
valid PDAL dimension and the output format supports measure point types.

By default, the OGR writer will create ESRI shapefiles. The particular OGR driver can be
specified with the ‘ogrdriver’ option.

Example

"inputfile.las",

{
"type": "writers.ogr",
"filename" "outfile.geojson",
"measure_dim": "Compression"

Options

filename Output file to write. The writer will accept a filename containing a single placeholder
character (#). If input to the writer consists of multiple PointViews, each will be written
to a separate file, where the placeholder will be replaced with an incrementing integer. If
no placeholder is found, all PointViews provided to the writer are aggregated into a
single file for output. Multiple PointViews are usually the result of multiple input files,
or using filters.splitter (page 227), filters.chipper (page 221) or filters.divider (page 224).

The driver will use the OGR GEQjson driver if the output filename extension is
‘geojson’, and the ESRI shapefile driver if the output filename extension is ‘shp’. If
neither extension is recognized, the filename is taken to represent a directory in which
ESRI shapefiles are written. The driver can be explicitly specified by using the
‘ogrdriver’ option.

multicount If 1, point objects will be written. If greater than 1, specifies the number of points
to group into a multipoint object. Not all OGR drivers support multipoint objects.
[Default: 1]

measure_dim If specified, points will be written with an extra data field, the dimension of
which is specified by this option. Not all output formats support measure data. [Default:
None]

7.3. Writers 129

http://www.gdal.org/ogr_formats.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: The measure_dim option is only supported if PDAL is built with GDAL version

2.1 or later.

ogrdriver The OGR driver to use for output. This option overrides any inference made about

output drivers from filename (page 129).

7.3.13 writers.pcd

The PCD Writer supports writing to Point Cloud Data (PCD)

(https://pcl-tutorials.readthedocs.io/en/latest/pcd_file_format.html) formatted files, which are

used by the Point Cloud Library (PCL) (http://pointclouds.org).

By default, compression is not enabled, and the PCD writer will output ASCII formatted data.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example
[
{
"type":"readers.pcd",
"filename":"inputfile.pcd"
}I
{
"type":"writers.pcd",
"filename":"outputfile.pcd"
}
]
Options

filename PCD file to write [Required]

compression Level of PCD compression to use (ascii, binary, compressed) [Default: “ascii”]

130

Chapter 7. Drivers

https://pcl-tutorials.readthedocs.io/en/latest/pcd_file_format.html
http://pointclouds.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

precision Decimal Precision for output of values. This can be overridden for individual
dimensions using the order option. [Default: 3]

order Comma-separated list of dimension names in the desired output order. For example
“X,Y,Z,Red,Green,Blue”. Dimension names can optionally be followed by a PDAL type
(e.g., Unsigned32) and dimension-specific precision (used only with “ascii”
compression). Ex: “X=Float:2, Y=Float:2, Z=Float:3, Intensity=Unsigned32” If no
precision is specified the value provided with the precision (page 131) option is used.
The default dimension type is double precision float. [Default: none]

keep_unspecified If true, writes all dimensions. Dimensions specified with the order
(page 131) option precede those not specified. [Default: true]

7.3.14 writers.pgpointcloud

The PostgreSQL Pointcloud Writer allows you to write to PostgreSQL database that have the
PostgreSQL Pointcloud (http://github.com/pramsey/pointcloud) extension enabled. The
Pointcloud extension stores point cloud data in tables that contain rows of patches. Each patch
in turn contains a large number of spatially nearby points.

While you can theoretically store the contents of a whole file of points in a single patch, it is
more practical to store a table full of smaller patches, where the patches are under the
PostgreSQL page size (8kb). For most LIDAR data, this practically means a patch size of
between 400 and 600 points.

In order to create patches of the right size, the Pointcloud writer should be preceded in the
pipeline file by filters.chipper (page 221).

The pgpointcloud format does not support WKT spatial reference specifications. A subset of
spatial references can be stored by using the ‘srid’ option, which allows storage of an EPSG
code (http://www.epsg.org) that covers many common spatial references. PDAL makes no
attempt to reproject data to your specified srid. Use filters.reprojection (page 197) for this
purpose.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example

"type":"readers.las",
"filename":"inputfile.las",

7.3. Writers 131

http://github.com/pramsey/pointcloud
http://www.epsg.org
http://www.epsg.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"spatialreference":"EPSG:26916"

"type":"filters.chipper",
"capacity":400

"type":"writers.pgpointcloud",

"connection":"host='localhost' dbname='lidar' user='pramsey'
=" ’
"table": "example",
"compression":"dimensional",
"srid":"26916"
}
]
Options

connection PostgreSQL connection string. In the form “host=hostname dbname=database
user=username password=pw port=5432" [Required]

table Database table to write to. [Required]
schema Database schema to write to. [Default: “public”]
column Table column to put patches into. [Default: “pa’]
compression Patch compression type to use. [Default: “”’dimensional”]
* none applies no compression
 dimensional applies dynamic compression to each dimension separately

* lazperf applies a “laz” compression (using the laz-perf
(https://github.com/hobu/laz-perf) library in PostgreSQL Pointcloud)

overwrite To drop the table before writing set to ‘true’. To append to the table set to ‘false’.
[Default: false]

srid Spatial reference ID (relative to the spatial_ref _sys table in PostGIS) to store with the
point cloud schema. [Default: 4326]

pcid An optional existing PCID to use for the point cloud schema. If specified, the schema
must be present. If not specified, a match will still be looked for, or a new schema will be
inserted. [Default: O]

pre_sql SQL to execute before running the translation. If the value references a file, the file is
read and any SQL inside is executed. Otherwise the value is executed as SQL itself.
[Optional]

132 Chapter 7. Drivers

https://github.com/hobu/laz-perf

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

post_sql SQL to execute after running the translation. If the value references a file, the file is
read and any SQL inside is executed. Otherwise the value is executed as SQL itself.
[Optional]

scale_x, scale_y, scale_z / offset_x, offset_y, offset_z If ANY of these options are specified
the X, Y and Z dimensions are adjusted by subtracting the offset and then dividing the
values by the specified scaling factor before being written as 32-bit integers (as opposed
to double precision values). If any of these options is specified, unspecified
scale_<x,y,x> options are given the value of 1.0 and unspecified offset_<x,y,z> are given
the value of 0.0.

output_dims If specified, limits the dimensions written for each point. Dimensions are listed
by name and separated by commas.

7.3.15 writers.ply

The ply writer writes the polygon file format (http://paulbourke.net/dataformats/ply/), a
common file format for storing three dimensional models. The writer emits points as PLY
vertices. The writer can also emit a mesh as a set of faces. filters.greedyprojection (page 236)
and filters.poisson (page 237) create a mesh suitable for output as faces.

Default Embedded Stage
This stage is enabled by default

Example
[
{
"type":"readers.pcd",
"filename":"inputfile.pcd"
}I
{
"type":"writers.ply",
"storage_mode":"little endian",
"filename":"outputfile.ply"
}
]
Options

filename ply file to write [Required]

7.3. Writers 133

http://paulbourke.net/dataformats/ply/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

storage_mode Type of ply file to write. Valid values are ‘ascii’, ‘little endian’, ‘big endian’.
[Default: “ascii”]

dims List of dimensions (and 7ypes (page 255)) in the format
<dimension_name>[=<type>] [, ...] to write as output. (e.g., “Y=int32_t,
X,Red=char”) [Default: All dimensions with stored types]

faces Write a mesh as faces in addition to writing points as vertices. [Default: false]

sized_types PLY has variously been written with explicitly sized type strings (‘int8’, ‘float32”,
‘uint32’, etc.) and implied sized type strings (‘char’, ‘float’, ‘int’, etc.). If true, explicitly
sized type strings are used. If false, implicitly sized type strings are used. [Default: true]

precision If specified, the number of digits to the right of the decimal place using f-style
formatting. Only permitted when ‘storage_mode’ is ‘ascii’. See the printf
(https://en.cppreference.com/w/cpp/io/c/fprintf) reference for more information.
[Default: g-style formatting (variable precision)]

7.3.16 writers.sbet

The SBET writer writes files in the SBET format, used for exchange data from inertial
measurement units (IMUs).

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

"input.sbet",
"output.sbet"

Options

filename File to write. [Required]

134 Chapter 7. Drivers

https://en.cppreference.com/w/cpp/io/c/fprintf

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

angles_are_degrees Convert all angular values from degrees to radians before write. [Default:
true]

7.3.17 writers.sqlite

The SQLite (http://sqlite.org) driver outputs point cloud data into a PDAL-sepecific scheme
that matches the approach of readers.pgpointcloud (page 84) and readers.oci (page 81).

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example

"type":"readers.las",
"filename":"inputfile.las"

"type":"filters.chipper",
"capacity":50

"type":"writers.sqglite",
"connection":"output.sqglite",
"cloud_table name":"SIMPLE CLOUD",
"pre_sql":"",

"post_sql":"",
"block_table_name":"SIMPLE_BLOCKS",
"cloud_column_name":"CLOUD",
"filename":"outputfile.pcd"

Options

connection SQLite filename [Required]
cloud_table_name Name of table to store cloud (file) information [Required]

block_table_name Name of table to store patch information [Required]

7.3. Writers 135

http://sqlite.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

cloud_column_name Name of column to store primary cloud_id key [Default: “cloud”]

compression Use LAZperf (https://github.com/hobu/laz-perf) compression technique to store
patches. [Default: false]

overwrite Drop the table before writing. To append to the table set to false. [Default: true]

pre_sql Optional SQL to execute before running the translation. If the value references a file,
the file is read and any SQL inside is executed. Otherwise the value is executed as SQL
itself.

post_sql Optional SQL to execute affer running the translation. If the value references a file,
the file is read and any SQL inside is executed. Otherwise the value is executed as SQL
itself.

scale_x, scale_y, scale_z / offset_x, offset_y, offset_z If ANY of these options are specified
the X, Y and Z dimensions are adjusted by subtracting the offset and then dividing the
values by the specified scaling factor before being written as 32-bit integers (as opposed
to double precision values). If any of these options is specified, unspecified
scale_<x,y,x> options are given the value of 1.0 and unspecified offset_<x,y,z> are given
the value of 0.0.

output_dims If specified, limits the dimensions written for each point. Dimensions are listed
by name and separated by commas.

7.3.18 writers.text

The text writer writes out to a text file. This is useful for debugging or getting smaller files
into an easily parseable format. The text writer supports both GeoJSON (http://geojson.org)
and CSV (http://en.wikipedia.org/wiki/Comma-separated_values) output.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

"type":"readers.las",

136 Chapter 7. Drivers

https://github.com/hobu/laz-perf
http://geojson.org
http://en.wikipedia.org/wiki/Comma-separated_values

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"filename":"inputfile.las"

"type":"writers.text",
"format":"geojson",
"order":"X,Y,z",
"keep_unspecified":"false",
"filename":"outputfile.txt"

Options

filename File to write to, or “STDOUT” to write to standard out [Required]
format Output format to use. One of geojson or csv. [Default: “csv”’]

precision Decimal Precision for output of values. This can be overridden for individual
dimensions using the order option. [Default: 3]

order Comma-separated list of dimension names in the desired output order. For example
“X.,Y,Z,Red,Green,Blue”. Dimension names can optionally be followed with a colon
(‘) and an integer to indicate the precision to use for output. Ex: “X:3, Y:5,Z:0” If no
precision is specified the value provided with the precision (page 137) option is used.
[Default: none]

keep_unspecified If true, writes all dimensions. Dimensions specified with the order
(page 137) option precede those not specified. [Default: true]

jscallback When producing GeoJSON, the callback allows you to wrap the data in a function,
so the output can be evaluated in a <script> tag.

quote_header When producing CSV, should the column header named by quoted? [Default:
true]

write_header Whether a header should be written. [Default: true]

newline When producing CSV, what newline character should be used? (For Windows,
\\r\\n is common.) [Default: “\n”’]

delimiter When producing CSV, what character to use as a delimiter? [Default: “,’]

7.3.19 writers.tiledb

Implements TileDB (https://tiledb.io) 1.4.1+ reads from an array.

Dynamic Plugin

7.3. Writers 137

https://tiledb.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This stage requires a dynamic plugin to operate

Streamable Stage

This stage supports streaming operations

Example
[
{
"type":"readers.las",
"array name":"input.las"
by
{
"type":"writers.tiledb",
"array_name'":'"output_array"
}
]
Options

array_name TileDB (https://tiledb.io) array to write to. [Required]

config_file TileDB (https://tiledb.io) configuration file [Optional]
tile_data_capacity Number of points per tile [Optional]

x_tile_size Tile size (x) in a Cartesian projection [Optional]

y_tile_size Tile size (y) in a Cartesian projection [Optional]

z_tile_size Tile size (z) in a Cartesian projection [Optional]

chunk_size Point cache size for chunked writes [Optional]

compression TileDB compression type for attributes, default is None [Optional]
compression_level TileDB compression level for chosen compression [Optional]
append Append to an existing TileDB array with the same schema [Optional]
stats Dump query stats to stdout [Optional]

filters JSON array or object of compression filters for either coords or attributes of the form
{coords/attributename : {“compression”: name, compression_options: value, ... }}
[Optional]

138 Chapter 7. Drivers

https://tiledb.io
https://tiledb.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

By default TileDB will use the following set of compression filters for coordinates and
attributes;

{

"coords": [
{"compression": "bit-shuffle"},
{"compression": "gzip", "compression_ level": 9}
1,
"Intensity": {"compression": "bzip2", "compression_level": 5},
"ReturnNumber": {"compression": "zstd", "compression_level": 75},
"NumberOfReturns": {"compression": "zstd", "compression_ level":
~75},
"ScanDirectionFlag": {"compression": "bzip2", "compression_level
-": 5},
"EdgeOfFlightLine": {"compression": "bzip2", "compression_level
-": 5},
"Classification": {"compression": "gzip", "compression_level": 9}
7
"ScanAngleRank": {"compression": "bzip2", "compression_level": 5}
7
"UserData": {"compression": "gzip", "compression_level": 9},
"PointSourceId": {"compression": "bzip2"},
"Red": {"compression": "rle"},
"Green": {"compression": "rle"},
"Blue": {"compression": "rle"},
"GpsTime": [
{"compression": "bit-shuffle"},
{"compression": "zstd", "compression_level": 75}

writers.bpf (page 107) Write BPF version 3 files. BPF is an NGA specification for point
cloud data.

writers.ept_addon (page 109) Append additional dimensions to Entwine resources.
writers.e57 (page 111) Write data in the E57 format.

writers.gdal (page 112) Create a raster from a point cloud using an interpolation algorithm.
writers.geowave (page 115) Write point cloud data to Accumulo.

writers.gltf (page 116) Write mesh data in GLTF format. Point clouds without meshes cannot
be written.

writers.las (page 117) Write ASPRS LAS versions 1.0 - 1.4 formatted data. LAZ support is
also available if enabled at compile-time.

writers.matlab (page 121) Write MATLAB .mat files. The output has a single array struct.
writers.nitf (page 123) Write LAS and LAZ point cloud data, wrapped in a NITF 2.1 file.

7.3. Writers 139

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

writers.null (page 125) Provides a sink for points in a pipeline. It’s the same as sending
pipeline output to /dev/null.

writers.oci (page 126) Write data to Oracle point cloud databases.
writers.ogr (page 129) Write a point cloud as a set of OGR points/multipoints
writers.pcd (page 130) Write PCD-formatted files in the ASCII, binary, or compressed format.

writers.pgpointcloud (page 131) Write to a PostgreSQL database that has the PostgreSQL
Pointcloud extension enabled.

writers.ply (page 133) Write points as PLY vertices. Can also emit a mesh as a set of faces.
writers.sbet (page 134) Write data in the SBET format.

writers.sqlite (page 135) Write point cloud data in a scheme that matches the approach used in
the PostgreSQL Pointcloud and OCI readers.

writers.text (page 136) Write points in a text file. GeoJSON and CSV formats are supported.
writers.tiledb (page 137) Write points into a TileDB database.

7.4 Filters

Filters operate on data as inline operations. They can remove, modify, reorganize, and add
points to the data stream as it goes by. Some filters can only operate on dimensions they
understand (consider filters.reprojection (page 197) doing geographic reprojection on XYZ
coordinates), while others do not interrogate the point data at all and simply reorganize or split
data.

7.4.1 Create

PDAL filters commonly create new dimensions (e.g., Height AboveGround) or alter
existing ones (e.g., Classification). These filters will not invalidate an existing KD-tree.

Note: We treat those filters that alter XYZ coordinates separately.

Note: When creating new dimensions, be mindful of the writer you are using and whether or
not the custom dimension can be written to disk if that is the desired behavior.

140 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.approximatecoplanar

The approximate coplanar filter implements a portion of the algorithm presented in
[Limberger2015] (page 540). Prior to clustering points, the authors first apply an approximate
coplanarity test, where points that meet the following criteria are labeled as approximately
coplanar.

)\2 > (Sa/\l)&&(Sﬁ)\Q) > /\3

A1, Ao, Ag are the eigenvalues of a neighborhood of points (defined by knn nearest neighbors)
in ascending order. The threshold values s, and sg are user-defined and default to 25 and 6
respectively.

The filter returns a point cloud with a new dimension Coplanar that indicates those points
that are part of a neighborhood that is approximately coplanar (1) or not (0).

Default Embedded Stage
This stage is enabled by default

Example

The sample pipeline presented below estimates the planarity of a point based on its eight
nearest neighbors using the approximate coplanar filter. A filters.range (page 214) stage then
filters out any points that were not deemed to be coplanar before writing the result in
compressed LAZ.

[

"input.las",

{

"type":"filters.approximatecoplanar",
"knn":8,

"threshl":25,

"thresh2":6

"type":"filters.range",
"limits":"Coplanar[1:1]"
by

"output.laz"

7.4. Filters 141

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

knn The number of k-nearest neighbors. [Default: 8]
thresh1l The threshold to be applied to the smallest eigenvalue. [Default: 25]

thresh2 The threshold to be applied to the second smallest eigenvalue. [Default: 6]

filters.assign

The assign filter allows you set the value of a dimension for all points to a provided value that
pass a range filter.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example 1

This pipeline resets the Classification of all points with classifications 2 or 3 to 0 and all
points with classification of 5 to 4.

[
"autzen-dd.las",
{
"type":"filters.assign",
"assignment" : "Classification[2:3]=0",
"assignment" : "Classification[5:5]=4"

"filename":"attributed.las",
"scale_x":0.0000001,
"scale_y":0.0000001

142 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

assignment A range (page 215) followed by an assignment of a value (see example). Can be
specified multiple times. The assignments are applied sequentially to the dimension
value as set when the filter began processing. [Required]

condition A list of ranges (page 215) that a point’s values must pass in order for the
assignment to be performed. [Default: none]

filters.cluster

The Cluster filter first performs Euclidean Cluster Extraction on the input PointView and
then labels each point with its associated cluster ID. It creates a new dimension ClusterID
that contains the cluster ID value. Cluster IDs start with the value 1. Points that don’t belong to
any cluster will are given a cluster ID of 0.

Default Embedded Stage
This stage is enabled by default

Example

"input.las",

{
"type":"filters.cluster"

Hy

{
"type":"writers.bpf",
"filename":"output.bpf",
"output_dims":"X,Y,Z,ClusterID"

Options

min_points Minimum number of points to be considered a cluster. [Default: 1]
max_points Maximum number of points to be considered a cluster. [Default: 2764 - 1]

tolerance Cluster tolerance - maximum Euclidean distance for a point to be added to the
cluster. [Default: 1.0]

7.4. Filters 143

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.colorinterp

The color interpolation filter assigns scaled RGB values from an image based on a given
dimension. It provides three possible approaches:

1. You provide a minimum (page 146) and maximum (page 146), and the data are scaled for
the given dimension (page 146) accordingly.

2. You provide a k (page 146) and a mad (page 147) setting, and the scaling is set based on
Median Absolute Deviation.

3. You provide a k (page 146) setting and the scaling is set based on the k
(page 146)-number of standard deviations from the median.

You can provide your own GDAL (http://www.gdal.org)-readable image for the scale color
factors, but a number of pre-defined ramps are embedded in PDAL. The default ramps
provided by PDAL are 256x1 RGB images, and might be a good starting point for creating
your own scale factors. See Default Ramps (page 145) for more information.

Note: filters.colorinterp (page 144) will use the entire band to scale the colors.

Default Embedded Stage
This stage is enabled by default

Example

"uncolored.las",
{
"type":"filters.colorinterp",
"ramp":"pestel_ shades",
"mad" :true,
"k":1.8,
"dimension":"Z"

by

"colorized.las"

144 Chapter 7. Drivers

http://www.gdal.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Fig. 7.4: Image data with interpolated colors based on Z dimension and pestel_shades
ramp.

Default Ramps

PDAL provides a number of default color ramps you can use in addition to providing your
own. Give the ramp name as the ramp (page 146) option to the filter and it will be used.
Otherwise, provide a GDAL (http://www.gdal.org)-readable raster filename.

awesome_green

black_orange

blue_orange

7.4. Filters 145

http://www.gdal.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

blue_ hue

blue_orange

blue_ red

heat_map

pestel_shades

Options

ramp The raster file to use for the color ramp. Any format supported by GDAL
(http://www.gdal.org) may be read. Alternatively, one of the default color ramp names
can be used. [Default: “pestel_shades”]

dimension A dimension name to use for the values to interpolate colors. [Default: “Z”]

minimum The minimum value to use to scale the data. If none is specified, one is computed
from the data. If one is specified but a k (page 146) value is also provided, the &
(page 146) value will be used.

maximum The maximum value to use to scale the data. If none is specified, one is computed
from the data. If one is specified but a k (page 146) value is also provided, the k
(page 146) value will be used.

invert Invert the direction of the ramp? [Default: false]

k Color based on the given number of standard deviations from the median. If set, minimum
(page 146) and maximum (page 146) will be computed from the median and setting them
will have no effect.

146 Chapter 7. Drivers

http://www.gdal.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

mad If true, minimum (page 146) and maximum (page 146) will be computed by the median
absolute deviation. See filters.mad (page 210) for discussion. [Default: false]

mad_multiplier MAD threshold multiplier. Used in conjunction with & (page 146) to
threshold the diferencing. [Default: 1.4862]

filters.colorization

The colorization filter populates dimensions in the point buffer using input values read from a
raster file. Commonly this is used to add Red/Green/Blue values to points from an aerial
photograph of an area. However, any band can be read from the raster and applied to any
dimension name desired.

Fig. 7.5: After colorization, points take on the colors provided by the input image

Note: GDAL (http://www.gdal.org) is used to read the color information and any
GDAL-readable supported format (https://www.gdal.org/formats_list.html) can be read.

The bands of the raster to apply to each are selected using the “band” option, and the values of
the band may be scaled before being written to the dimension. If the band range is 0-1, for
example, it might make sense to scale by 256 to fit into a traditional 1-byte color value range.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

7.4. Filters 147

http://www.gdal.org
https://www.gdal.org/formats_list.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This stage supports streaming operations

Example

"uncolored.las",

{
"type":"filters.colorization",
"dimensions":"Red:1:1.0, Blue, Green::256.0",
"raster":"aerial.tif"

bo

"colorized.las"

Considerations

Certain data configurations can cause degenerate filter behavior. One significant knob to adjust
is the GDAL__CACHEMAX environment variable. One driver which can have issues is when a
TIFF (http://www.gdal.org/frmt_gtiff.html) file is striped vs. tiled. GDAL’s data access in that
situation is likely to cause lots of re-reading if the cache isn’t large enough.

Consider a striped TIFF file of 286mb:

—rW-—r————— @ 1 hobu staff 286M Oct 29 16:58 orth-striped.tif

"colourless.laz",

{
"type":"filters.colorization",
"raster":"orth-striped.tif"

s

"coloured-striped.las"

Simple application of the filters.colorization (page 147) using the striped TIFF
(http://www.gdal.org/frmt_gtiff.html) with a 268mb readers.las (page 69) file will take nearly
1:54.

[hobu@pyro knudsen (master)]$ time ~/dev/git/pdal/bin/pdal pipeline -
—~1 striped. json

real 1m53.477s

148 Chapter 7. Drivers

http://www.gdal.org/frmt_gtiff.html
http://www.gdal.org/frmt_gtiff.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

user Im20.018s
sys 0m33.397s

Setting the GDAL_CACHEMAX variable to a size larger than the TIFF file dramatically speeds
up the color fetching:

[hobu@pyro knudsen (master)]$ export GDAL_CACHEMAX=500
[hobu@pyro knudsen (master)]$ time ~/dev/git/pdal/bin/pdal pipeline,_
—striped. json

real Oml19.034s
user Oml5.557s
sys Oml.102s

Options

raster The raster file to read the band from. Any format
(https://www.gdal.org/formats_list.html) supported by GDAL (http://www.gdal.org) may
be read.

dimensions A comma separated list of dimensions to populate with values from the raster file.
Dimensions will be created if they don’t already exist. The format of each dimension is
<name>:<band_number>:<scale_factor>. Either or both of band number and scale factor
may be omitted as may ‘:” separators if the data is not ambiguous. If not supplied, band
numbers begin at 1 and increment from the band number of the previous dimension. If
not supplied, the scaling factor is 1.0. [Default: “Red:1:1.0, Green:2:1.0, Blue:3:1.0”]

filters.covariancefeatures

This filter implements various local feature descriptors introduced that are based on the
covariance matrix of a point’s neighborhood. The user can pick a set of feature descriptors by
setting the feature_set option. Currently, the only supported feature is the dimensionality
(page 150) set of feature descriptors introduced below.

Example

"input.las",

{
"type":"filters.covariancefeatures",
"knn":8,
"threads": 2,

7.4. Filters 149

https://www.gdal.org/formats_list.html
http://www.gdal.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"feature_set": "Dimensionality"

}I
{
"type":"writers.bpf",
"filename":"output.las",
"output_dims":"X,Y,Z,Linearity,Planarity, Scattering,
—Verticality"

}

Options

knn The number of k nearest neighbors used for calculating the covariance matrix. [Default:
10]

threads The number of threads used for computing the feature descriptors. [Default: 1]

feature_set The features to be computed. Currently only supports Dimensionality.
[Default: “Dimensionality”]

stride When finding k nearest neighbors, stride determines the sampling rate. A stride of 1
retains each neighbor in order. A stride of two selects every other neighbor and so on.
[Default: 1]

Dimensionality feature set

The features introduced in [Demantke2011] (page 539) describe the shape of the
neighborhood, indicating whether the local geometry is more linear (1D), planar (2D) or
volumetric (3D) while the one introduced in [Guinard2017] (page 540) adds the idea of a
structure being vertical.

The dimensionality filter introduces the following four descriptors that are computed from the
covariance matrix of the knn neighbors:

* linearity - higher for long thin strips

* planarity - higher for planar surfaces

* scattering - higher for complex 3d neighbourhoods

* verticality - higher for vertical structures, highest for thin vertical strips

It introduces four new dimensions that hold each one of these values: Linearity
Planarity Scatteringand Verticality.

150 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.csf

The Cloth Simulation Filter (CSF) classifies ground points based on the approach outlined in
[Zhang2016] (page 540).

Default Embedded Stage
This stage is enabled by default

Example

The sample pipeline below uses CSF to segment ground and non-ground returns, using default
options, and writing only the ground returns to the output file.

[
"input.las",

{
"type":"filters.csf"

}l

{
"type":"filters.range",
"limits":"Classification[2:2]"

by

"output.laz"

Options

resolution Cloth resolution. [Default: 1.0]
ignore A range (page 215) of values of a dimension to ignore.

returns Return types to include in output. Valid values are “first”, “last”, “intermediate” and
“only”. [Default: “last, only”’]

threshold Classification threshold. [Default: 0.5]
smooth Perform slope post-processing? [Default: true]
step Time step. [Default: 0.65]

rigidness Rigidness. [Default: 3]

iterations Maximum number of iterations. [Default: 500]

7.4. Filters 151

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.dbscan

The DBSCAN filter performs Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) [Ester1996] (page 539) and labels each point with its associated cluster ID. Points
that do not belong to a cluster are given a Cluster ID of -1. The remaining clusters are labeled
as integers starting from O.

Default Embedded Stage
This stage is enabled by default

New in version 2.1.

Example

"input.las",

{
"type":"filters.dbscan",

"min_points":10,
"eps":2.0,
"dimensions":"X, Y, Z"

"type":"writers.bpf",
"filename": "output.bpf",
"output_dims":"X,Y,Z,ClusterID"

Options

min_points The minimum cluster size min_points should be greater than or equal to the
number of dimensions (e.g., X, Y, and Z) plus one. As a rule of thumb, two times the
number of dimensions is often used. [Default: 6]

eps The epsilon parameter can be estimated from a k-distance graph (for k =min_points
minus one). eps defines the Euclidean distance that will be used when searching for
neighbors. [Default: 1.0]

dimensions Comma-separated string indicating dimensions to use for clustering. [Default:
X,Y,Z]

152 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.dem

The DEM filter uses a source raster to keep point cloud data within a each cell within a
computed range. For example, atmospheric or MTA noise in a scene can be quickly removed
by keeping all data within 100m above and 20m below a pre-existing elevation model.

Default Embedded Stage
This stage is enabled by default

Example
[
{
"type":"filters.dem",
"raster":"dem.tif",
"limits":"Z[20:100]"
}
]
Options

limits A range (page 215) that defines the dimension and the magnitude above and below the
value of the given dimension to filter.

For example “Z[20:100]” would keep all Z point cloud values that are within 100 units
above and 20 units below the elevation model value at the given X and Y value.

raster GDAL readable raster (http://www.gdal.org/formats_list.html) data to use for filtering.
band GDAL Band number to read (count from 1) [Default: 1]

filters.eigenvalues

The eignvalue filter returns the eigenvalues for a given point, based on its k-nearest neighbors.

The filter produces three new dimensions (Eigenvalue0, Eigenvaluel, and
Eigenvalue?2), which can be analyzed directly, or consumed by downstream stages for more
advanced filtering. The eigenvalues are sorted in ascending order.

The eigenvalue decomposition is performed using Eigen’s SelfAdjointEigenSolver
(https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html).

7.4. Filters 153

http://www.gdal.org/formats_list.html
https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Default Embedded Stage
This stage is enabled by default

Example

This pipeline demonstrates the calculation of the eigenvalues. The newly created dimensions
are written out to BPF for further inspection.

[

"input.las",

{

"type":"filters.eigenvalues",
"knn":8

by

"type":"writers.bpf",
"filename": "output.bpf",
"output_dims":"X, Y, Z,Eigenvalue0,Eigenvaluel,Eigenvalue2"

Options

knn The number of k-nearest neighbors. [Default: 8]

normalize Normalize eigenvalues such that the sum is 1. [Default: false]

filters.estimaterank

The rank estimation filter uses singular value decomposition (SVD) to estimate the rank of a
set of points. Point sets with rank 1 correspond to linear features, while sets with rank 2
correspond to planar features. Rank 3 corresponds to a full 3D feature. In practice this can be
used alone, or possibly in conjunction with other filters to extract features (e.g., buildings,
vegetation).

Two parameters are required to estimate rank (though the default values will be suitable in
many cases). First, the knn (page 155) parameter defines the number of points to consider
when computing the SVD and estimated rank. Second, the thresh (page 155) parameter is used
to determine when a singular value shall be considered non-zero (when the absolute value of
the singular value is greater than the threshold).

154 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

The rank estimation is performed on a pointwise basis, meaning for each point in the input
point cloud, we find its knn (page 155) neighbors, compute the SVD, and estimate rank. The
filter creates a new dimension called Rank that can be used downstream of this filter stage in
the pipeline. The type of writer used will determine whether or not the Rank dimension itself
can be saved to disk.

Default Embedded Stage
This stage is enabled by default

Example

This sample pipeline estimates the rank of each point using this filter and then filters out those
points where the rank is three using filters.range (page 214).

[

"input.las",
{

"type":"filters.estimaterank",
"knn":8,
"thresh":0.01

"type":"filters.range",
"limits":"Rank![3:3]"
bo

"output.laz"

Options

knn The number of k-nearest neighbors. [Default: §]

thresh The threshold used to identify nonzero singular values. [Default: 0.01]

filters.elm

The Extended Local Minimum (ELM) filter marks low points as noise. This filter is an
implementation of the method described in [Chen2012] (page 539).

ELM begins by rasterizing the input point cloud data at the given cell (page 157) size. Within
each cell, the lowest point is considered noise if the next lowest point is a given threshold
above the current point. If it is marked as noise, the difference between the next two points is

7.4. Filters 155

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

also considered, marking points as noise if needed, and continuing until another neighbor is
found to be within the threshold. At this point, iteration for the current cell stops, and the next
cell is considered.

Default Embedded Stage
This stage is enabled by default

Example #1

The following PDAL pipeline applies the ELM filter, using a cell (page 157) size of 20 and
applying the classification (page 157) code of 18 to those points determined to be noise.

{
"pipeline": [
"input.las",

{
"type":"filters.elm",

"cell":20.0,
"class":18
}r

"output.las"

Example #2

This variation of the pipeline begins by assigning a value of O to all classifications, thus
resetting any existing classifications. It then proceeds to compute ELM with a threshold
(page 157) value of 2.0, and finishes by extracting all returns that are not marked as noise.

[

"input.las",

{

"type":"filters.assign",
"assignment":"Classification[:]=0"

by

"type":"filters.elm",
"threshold":2.0

"type":"filters.range",

156 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"limits":"Classification! [7:7]"

by

"output.las"

Options

cell Cell size. [Default: 10.0]
class Classification value to apply to noise points. [Default: 7]

threshold Threshold value to identify low noise points. [Default: 1.0]

filters.ferry

The ferry filter copies data from one dimension to another, creates new dimensions or both.

The filter is guided by a list of ‘from’ and ‘to’ dimensions in the format <from>=><to>. Data
from the ‘from’ dimension is copied to the ‘to’ dimension. The ‘from’ dimension must exist.
The ‘to’ dimension can be pre-existing or will be created by the ferry filter.

Alternatively, the format =><to> can be used to create a new dimension without copying data
from any source. The values of the ‘to’ dimension are default initialized (set to 0).

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example 1

In this scenario, we are making copies of the X and Y dimensions into the dimensions
StatePlaneX and StatePlaneY. Since the reprojection filter will modify the dimensions
X and Y, this allows us to maintain both the pre-reprojection values and the post-reprojection
values.

[

"uncompressed.las",

7.4. Filters 157

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"readers.las",
"spatialreference":"EPSG:2993",
"filename":"../las/l.2-with-color.las"

"type":"filters.ferry",
"dimensions":"X => StatePlaneX, Y=>StatePlaneY"

"type":"filters.reprojection",
"out_srs":"EPSG:4326+4326"

"type":"writers.las",
"scale x":"0.0000001",
"scale_y":"0.0000001",
"filename":"colorized.las"

Example 2

The ferry filter is being used to add a dimension Classification to points so that the

value can be set to ‘2’ and written as a LAS file.

"type": "readers.gdal",
"filename": "somefile.tif"
}/
{
"type": "filters.ferry",
"dimensions": "=>Classification"”
br
{
"type": "filters.assign",
"assignment": "Classification[:]=2"
br
"out.las"

158 Chapter 7.

Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

dimensions A list of dimensions whose values should be copied. The format of the option is
<from>=><to>, <from>=><to>,... Spaces are ignored. ‘from’ can be left empty, in
which case the ‘to” dimension is created and default-initialized. ‘to’ dimensions will be
created if necessary.

Note: the old syntax that used ‘=" instead of ‘=>’ between dimension names is still
supported.

filters.hag_delaunay

The Height Above Ground Delaunay filter takes as input a point cloud with
Classification setto 2 for ground points. It creates a new dimension,
HeightAboveGround, that contains the normalized height values.

Note: We expect ground returns to have the classification value of 2 in keeping with the
ASPRS Standard LIDAR Point Classes
(http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf).

Ground points may be generated by filters.pmf (page 181) or filters.smrf (page 185), but you
can use any method you choose, as long as the ground returns are marked.

Normalized heights are a commonly used attribute of point cloud data. This can also be
referred to as height above ground (HAG) or above ground level (AGL) heights. In the end, it
is simply a measure of a point’s relative height as opposed to its raw elevation value.

The filter creates a delaunay triangulation of the count (page 161) ground points closest to the
non-ground point in question. If the non-ground point is within the trianulated area, the
assigned HeightAboveGround is the difference between its Z value and a ground height
interpolated from the three vertices of the containing triangle. If the non-ground point is
outside of the triangulated area, its Height AboveGround is calculated as the difference
between its Z value and the Z value of the nearest ground point.

Choosing a value for count (page 161) is difficult, as placing the non-ground point in the
triangulated area depends on the layout of the nearby points. If, for example, all the ground
points near a non-ground point lay on one side of that non-ground point, finding a containing
triangle will fail.

Default Embedded Stage
This stage is enabled by default

7.4. Filters 159

http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example #1

Using the autzen dataset (here shown colored by elevation), which already has points classified
as ground

we execute the following pipeline

[

"autzen.laz",

{
"type":"filters.hag delaunay"

br

{
"type":"writers.laz",
"filename":"autzen_hag delaunay.laz",
"extra_dims":"HeightAboveGround=float32"

which is equivalent to the pdal translate command

$ pdal translate autzen.laz autzen_hag_delaunay.laz hag_delaunay \
——-writers.las.extra_dims="HeightAboveGround=float32"

In either case, the result, when colored by the normalized height instead of elevation is

160 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

count The number of ground neighbors to consider when determining the height above ground
for a non-ground point. [Default: 10]

allow_extrapolation If false and a non-ground point lies outside of the bounding box of all
ground points, its HeightAboveGround is set to 0. If true and delaunay is set, the
HeightAboveGround is set to the difference between the heights of the non-ground
point and nearest ground point. [Default: false]

filters.hag_dem

The Height Above Ground (HAG) Digital Elevation Model (DEM) filter loads a
GDAL-readable raster image specifying the DEM. The Z value of each point in the input is
compared against the value at the corresponding X,Y location in the DEM raster. It creates a
new dimension, HeightAboveGround, that contains the normalized height values.

Normalized heights are a commonly used attribute of point cloud data. This can also be
referred to as height above ground (HAG) or above ground level (AGL) heights. In the end, it
is simply a measure of a point’s relative height as opposed to its raw elevation value.

Default Embedded Stage

7.4. Filters 161

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example #1

Using the autzen dataset (here shown colored by elevation)

we generate a DEM based on the points already classified as ground

$ pdal translate autzen.laz autzen_dem.tif range \
——filters.range.limits="Classification[2:2]" \
—-—-writers.gdal.output_type="idw" \
——writers.gdal.resolution=6 \
——writers.gdal.window_size=24

and execute the following pipeline

162

Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"autzen.laz",

{
"type":"filters.hag_dem",

"raster": "autzen dem.tif"

by

"type":"writers.las",
"filename":"autzen_hag_dem.laz",
"extra_dims":"HeightAboveGround=float32"

which is equivalent to the pdal translate command

$ pdal translate autzen.laz autzen_hag_dem.laz hag_dem \
—--filters.hag_dem.raster=autzen_dem.tif \
——writers.las.extra_dims="HeightAboveGround=float32"

In either case, the result, when colored by the normalized height instead of elevation is

7.4. Filters

163

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

raster GDAL-readable raster to use for DEM.
band GDAL Band number to read (count from 1). [Default: 1]

zero_ground If true, set HAG of ground-classified points to O rather than comparing Z value
to raster DEM. [Default: true]

filters.hag_nn

The Height Above Ground Nearest Neighbor filter takes as input a point cloud with
Classification setto 2 for ground points. It creates a new dimension,
HeightAboveGround, that contains the normalized height values.

Note: We expect ground returns to have the classification value of 2 in keeping with the
ASPRS Standard LIDAR Point Classes
(http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf).

Ground points may be generated by filters.pmf (page 181) or filters.smrf (page 185), but you
can use any method you choose, as long as the ground returns are marked.

Normalized heights are a commonly used attribute of point cloud data. This can also be
referred to as height above ground (HAG) or above ground level (AGL) heights. In the end, it
is simply a measure of a point’s relative height as opposed to its raw elevation value.

The filter finds the count (page 167) ground points nearest the non-ground point under
consideration. It calculates an average ground height weighted by the distance of each ground
point from the non-ground point. The HeightAboveGround is the difference between the Z
value of the non-ground point and the interpolated ground height.

Default Embedded Stage
This stage is enabled by default

Example #1

Using the autzen dataset (here shown colored by elevation), which already has points classified
as ground

164 Chapter 7. Drivers

http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

we execute the following pipeline

[

"autzen.laz",

{
"type":"filters.hag_nn"

}o

{
"type":"writers.laz",
"filename":"autzen_hag nn.laz",
"extra_dims":"HeightAboveGround=float32"

which is equivalent to the pdal translate command

$ pdal translate autzen.laz autzen_hag nn.laz hag_nn \
——writers.las.extra_dims="HeightAboveGround=float32"

In either case, the result, when colored by the normalized height instead of elevation is

7.4. Filters 165

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example #2

In the previous example, we chose to write Height AboveGround using the extra_dims
option of writers.las (page 117). If you’d instead like to overwrite your Z values, then follow
the height filter with filters.ferry (page 157) as shown

[

"autzen.laz",
{
"type":"filters.hag_nn"
by
{
"type":"filters.ferry",
"dimensions":"HeightAboveGround=>7"
by

"autzen-height-as-Z.laz"

166 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example #3

If you don’t yet have points classified as ground, start with filters.pmf (page 181) or filters.smrf
(page 185) to label ground returns, as shown

[

"autzen.laz",

{
"type":"filters.smrf"

"type":"filters.hag nn"

"type":"filters.ferry",
"dimensions":"HeightAboveGround=>Z7"

s

"autzen-height-as-Z-smrf.laz"

Options

count The number of ground neighbors to consider when determining the height above ground
for a non-ground point. [Default: 1]

max_distance Use only ground points within max_distance of non-ground point when
performing neighbor interpolation. [Default: None]

allow_extrapolation If false and a non-ground point lies outside of the bounding box of all
ground points, its HeightAboveGround is set to 0. If true, extrapolation is used to
assign the Height AboveGround value. [Default: false]

filters.info

The Info filter provides simple information on a point set as metadata. It is usually invoked by
the info command, rather than by user code. The data provided includes bounds, a count of
points, dimension names, spatial reference, and points meeting a query criteria.

Default Embedded Stage

This stage is enabled by default

Streamable Stage

7.4. Filters 167

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This stage supports streaming operations

"input.las",

{
"type":"filters.info",
"Point" . "1_5"

Options

point A comma-separated list of single point IDs or ranges of points. For example “2-6, 10,
25 selects eight points from the input set. The first point has an ID of 0. The point
(page 168) option can’t be used with the query (page 168) option. [Default: no points are
selected.]

query A specification to retrieve points near a location. Syntax of the the query is
X,Y[,Z][/count] where ‘X’, ‘Y’ and ‘Z’ are coordinate locations mapping to the X, Y
and Z point dimension and ‘count’ is the number of points to return. If ‘count’ isn’t
specified, the 10 points nearest to the location are returned. The guery (page 168) option
can’t be used with the point (page 168) option. [Default: no points are selected.]

filters.lof

The Local Outlier Factor (LOF) filter was introduced as a method of determining the degree
to which an object is an outlier. This filter is an implementation of the method described in
[Breunig2000] (page 539).

The filter creates three new dimensions, KDistance, LocalReachabilityDistance
and LocalOutlierFactor, all of which are double-precision floating values. The
KDistance dimension records the Euclidean distance between a point and it’s k-th nearest
neighbor (the number of k neighbors is set with the minpts (page 169) option). The
LocalReachabilityDistance is the inverse of the mean of all reachability distances for
a neighborhood of points. This reachability distance is defined as the max of the Euclidean
distance to a neighboring point and that neighbor’s own previously computed KDistance.
Finally, each point has a LocalOutlierFactor which is the mean of all
LocalReachabilityDistance values for the neighborhood. In each case, the
neighborhood is the set of k nearest neighbors.

In practice, setting the minpts (page 169) parameter appropriately and subsequently filtering
outliers based on the computed LocalOutlierFactor can be difficult. The authors
present some work on establishing upper and lower bounds on LOF values, and provide some

168 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

guidelines on selecting minpts (page 169) values, which users of this filter should find
instructive.

Note: To inspect the newly created, non-standard dimensions, be sure to write to an output
format that can support arbitrary dimensions, such as BPF.

Default Embedded Stage
This stage is enabled by default

Example

The sample pipeline below computes the LOF with a neighborhood of 20 neighbors, followed
by a range filter to crop out points whose LocalOutlierFactor exceeds 1.2 before
writing the output.

[

"input.las",

{
"type":"filters.lof",
"minpts":20

by

{

"type":"filters.range",
"limits":"LocalOutlierFactor[:1.2]"

by

"output.laz"

Options

minpts The number of k nearest neighbors. [Default: 10]

filters.miniball

The Miniball Criterion was introduced in [Weyrich2004] (page 540) and is based on the
assumption that points that are distant to the cluster built by their k-neighborhood are likely to
be outliers. First, the smallest enclosing ball is computed for the k-neighborhood, giving a
center point and radius [Fischer2010] (page 539). The miniball criterion is then computed by

7.4. Filters 169

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

comparing the distance (from the current point to the miniball center) to the radius of the
miniball.

The author suggests that the Miniball Criterion is more robust than the Plane Fit Criterion
(page 179) around high-frequency details, but demonstrates poor outlier detection for points
close to a smooth surface.

The filter creates a single new dimension, Miniball, that records the Miniball criterion for
the current point.

Note: To inspect the newly created, non-standard dimensions, be sure to write to an output
format that can support arbitrary dimensions, such as BPF.

Default Embedded Stage
This stage is enabled by default

Example

The sample pipeline below computes the Miniball criterion with a neighborhood of 8
neighbors. We do not apply a fixed threshold to single out outliers based on the Miniball
criterion as the range of values can vary from one dataset to another. In general, higher values
indicate the likelihood of a point being an outlier.

[

"input.las",

{
"type":"filters.miniball",
"knn":8

by

"output.laz"

Options

knn The number of k nearest neighbors. [Default: 8]

filters.neighborclassifier

The neighborclassifier filter allows you update the value of the classification for specific
points to a value determined by a K-nearest neighbors vote. For each point, the k (page 172)

170 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

nearest neighbors are queried and if more than half of them have the same value, the filter
updates the selected point accordingly

For example, if an automated classification procedure put/left erroneous vegetation points near
the edges of buildings which were largely classified correctly, you could try using this filter to
fix that problem.

Similiarly, some automated classification processes result in prediction for only a subset of the
original point cloud. This filter could be used to extrapolate those predictions to the original.

Default Embedded Stage
This stage is enabled by default

Example 1

This pipeline updates the Classification of all points with classification 1 (unclassified) based
on the consensus (majority) of its nearest 10 neighbors.

[

"autzen_class.las",

{

"type" : "filters.neighborclassifier",
"domain" : "Classification[1:1]",
"k" : 10

y

"autzen_class_refined.las"

Example 2

This pipeline moves all the classifications from “pred.txt” to src.las. Any points in src.las that
are not in pred.txt will be assigned based on the closest point in pred.txt.

[

"src.las",

{

"type" : "filters.neighborclassifier",
"k" : 1,
"candidate" : "pred.txt"

}I

"dest.las"

7.4. Filters 171

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

candidate A filename which points to the point cloud containing the points which will do the
voting. If not specified, defaults to the input of the filter.

domain A range (page 215) which selects points to be processed by the filter. Can be
specified multiple times. Points satisfying any range will be processed

k An integer which specifies the number of neighbors which vote on each selected point.
filters.nndistance
The NNDistance filter runs a 3-D nearest neighbor algorithm on the input cloud and creates a

new dimension, NNDistance, that contains a distance metric described by the mode
(page 172) of the filter.

Default Embedded Stage
This stage is enabled by default

Example

"input.las",

{

"type":"filters.nndistance",
"k" . 8

"type":"writers.bpf",
"filename":"output.las",
"output_dims":"X, Y, Z,NNDistance"

Options

mode The mode of operation. Either “kth”, in which the distance is the euclidian distance of
the subject point from the kth remote point or “avg” in which the distance is the average
euclidian distance from the k (page 172) nearest points. [Default: ‘kth’]

k The number of k nearest neighbors to consider. [Default: 10]

172 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.normal

The normal filter returns the estimated normal and curvature for a collection of points. The
algorithm first computes the eigenvalues and eigenvectors of the collection of points, which is
comprised of the k-nearest neighbors. The normal is taken as the eigenvector corresponding to
the smallest eigenvalue. The curvature is computed as

M
Mo+ A+ Ao

where)\; are the eigenvalues sorted in ascending order.

curvature =

The filter produces four new dimensions (NormalX, NormalY, NormalZ, and
Curvature), which can be analyzed directly, or consumed by downstream stages for more
advanced filtering.

The eigenvalue decomposition is performed using Eigen’s SelfAdjointEigenSolver
(https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html).

Normals will be automatically flipped towards positive Z, unless the always_up (page 174) flag
is set to false. Users can optionally set any of the XYZ coordinates to specify a custom
viewpoint (page 174) or set them all to zero to effectively disable the normal flipping.

Note: By default, the Normal filter will invert normals such that they are always pointed “up”
(positive Z). If the user provides a viewpoint (page 174), normals will instead be inverted such
that they are oriented towards the viewpoint, regardless of the always_up (page 174) flag. To
disable all normal flipping, do not provide a viewpoint (page 174) and set always_up

(page 174) to false.

In addition to always_up (page 174) and viewpoint (page 174), users can run a refinement step
(on by default) that propagates normals using a minimum spanning tree. The propagated
normals can lead to much more consistent results across the dataset.

Note: To disable normal propagation, users can set refine (page 174) to false.

Default Embedded Stage
This stage is enabled by default

Example

This pipeline demonstrates the calculation of the normal values (along with curvature). The
newly created dimensions are written out to BPF for further inspection.

7.4. Filters 173

https://eigen.tuxfamily.org/dox/classEigen_1_1SelfAdjointEigenSolver.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"input.las",

{

"type":"filters.normal",
"knn":8

"type":"writers.bpf",
"filename":"output.bpf",
"output_dims":"X,Y, Z,NormalX,NormalY,NormalZ, Curvature"

Options

knn The number of k-nearest neighbors. [Default: 8]

viewpoint A single WKT or GeoJSON 3D point. Normals will be inverted such that they are
all oriented towards the viewpoint.

always_up A flag indicating whether or not normals should be inverted only when the Z
component is negative. [Default: true]

refine A flag indicating whether or not to reorient normals using minimum spanning tree
propagation. [Default: true]

filters.outlier

The outlier filter provides two outlier filtering methods: radius and statistical. These two
approaches are discussed in further detail below.

It is worth noting that both filtering methods simply apply a classification value of 7 to the
noise points (per the LAS specification
(http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf)). To remove the
noise points altogether, users can add a range filter (page 214) to their pipeline, downstream
from the outlier filter.

Default Embedded Stage
This stage is enabled by default

"type":"filters.range",

174 Chapter 7. Drivers

http://www.asprs.org/a/society/committees/standards/LAS_1_4_r13.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"limits":"Classification! [7:7]"

Statistical Method

The default method for identifying outlier points is the statistical outlier method. This method
requires two passes through the input PointView, first to compute a threshold value based on
global statistics, and second to identify outliers using the computed threshold.

In the first pass, for each point p; in the input PointView, compute the mean distance u; to
each of the £ nearest neighbors (where £ is configurable and specified by mean_k (page 178)).
Then,

1 N
M—N;Ni

1 N
o= mZ(Mi - [)?

i=1

A global mean 1z of these mean distances is then computed along with the standard deviation o.
From this, the threshold is computed as

t=p+mo

where m is a user-defined multiplier specified by multiplier (page 178).

We now interate over the pre-computed mean distances p; and compare to computed threshold
value. If p; is greater than the threshold, it is marked as an outlier.

, true, ifpu, >=1
outlier; =)
false, otherwise

Before outlier removal, noise points can be found both above and below the scene.
After outlier removal, the noise points are removed.

See [Rusu2008] (page 540) for more information.

Example

In this example, points are marked as outliers if the average distance to each of the 12 nearest
neighbors is below the computed threshold.

7.4. Filters 175

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

176 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"input.las",

{

"type":"filters.outlier",
"method":"statistical",
"mean_k":12,
"multiplier":2.2

}I

"output.las"

Radius Method

For each point p; in the input PointView, this method counts the number of neighboring
points k; within radius r (specified by radius (page 178)). If k; < kynin, where k,,;,, is the
minimum number of neighbors specified by min_k (page 177), it is marked as an outlier.

outlier; =

true, if k; < kpin
false, otherwise

Example

The following example will mark points as outliers when there are fewer than four neighbors
within a radius of 1.0.

[

"input.las",

{
"type":"filters.outlier",

"method":"radius",
"radius":1.0,
"min_k":4

o

"output.las"

Options

class The classification value to apply to outliers. [Default: 7]
method The outlier removal method (either “statistical” or “radius”). [Default: “statistical’]

min_k Minimum number of neighbors in radius (radius method only). [Default: 2]

7.4. Filters 177

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

radius Radius (radius method only). [Default: 1.0]
mean_k Mean number of neighbors (statistical method only). [Default: §]

multiplier Standard deviation threshold (statistical method only). [Default: 2.0]

filters.overlay

The overlay filter allows you to set the values of a selected dimension based on an
OGR-readable polygon or multi-polygon.

Default Embedded Stage
This stage is enabled by default

OGR SQL support

You can limit your queries based on OGR’s SQL support. If the filter has both a datasource
(page 179) and a query (page 179) option, those will be used instead of the entire OGR data
source. At this time it is not possible to further filter the OGR query based on a geometry but
that may be added in the future.

Note: The OGR SQL support follows the rules specified in ExecuteSQL
(http://www.gdal.org/ogr__api_8h.html#a9892ecb0bf61add295bd9decdb13797a)
documentation, and it will pass SQL down to the underlying datasource if it can do so.

Example 1

In this scenario, we are altering the attributes of the dimension Classification. Points
from autzen-dd.las that lie within a feature will have their classification to match the CLS field
associated with that feature.

[

"autzen-dd.las",

{
"type":"filters.overlay",
"dimension":"Classification",
"datasource":"attributes.shp",
"layer":"attributes",
"column":"CLS"

}I

178 Chapter 7. Drivers

http://www.gdal.org/ogr__api_8h.html#a9892ecb0bf61add295bd9decdb13797a

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"filename":"attributed.las",
"scale_x":0.0000001,
"scale_y":0.0000001

Example 2

This example sets the Intensity attribute to CLS values read from the OGR SQL
(http://www.gdal.org/ogr_sql_sqlite.html) query.

[

"autzen-dd.las",

{
"type":"filters.overlay",
"dimension":"Intensity",
"datasource":"attributes.shp",
"query":"SELECT CLS FROM attributes where cls!=6",
"column":"CLS"

by
"attributed.las"

Options

dimension Name of the dimension whose value should be altered. [Required]
datasource OGR-readable datasource for Polygon or MultiPolygon data. [Required]
column The OGR datasource column from which to read the attribute. [Default: first column]

query OGR SQL query to execute on the datasource to fetch geometry and attributes. The
entire layer is fetched if no query is provided. [Default: none]

layer The data source’s layer to use. [Defalt: first layer]

filters.planefit

The Plane Fit Criterion was introduced in [Weyrich2004] (page 540) and computes the
deviation of a point from a manifold approximating its neighbors. First, a plane is fit to each
point’s k-neighborhood by performing an eigenvalue decomposition. Next, the mean point to
plane distance is computed by considering all points within the neighborhood. This is
compared to the point to plane distance of the current point giving rise to the k-neighborhood.

7.4. Filters 179

http://www.gdal.org/ogr_sql_sqlite.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

As the mean distance of the k-neighborhood approaches 0, the Plane Fit criterion will tend
toward 1. As point to plane distance of the current point approaches 0, the Plane Fit criterion
will tend toward 0.

The author suggests that the Plane Fit Criterion is well suited to outlier detection when
considering noisy reconstructions of smooth surfaces, but produces poor results around small
features and creases.

The filter creates a single new dimension, PlaneF1it, that records the Plane Fit criterion for
the current point.

Note: To inspect the newly created, non-standard dimensions, be sure to write to an output
format that can support arbitrary dimensions, such as BPF.

Default Embedded Stage
This stage is enabled by default

Example

The sample pipeline below computes the Plane Fit criterion with a neighborhood of 8
neighbors. We do not apply a fixed threshold to single out outliers based on the Plane Fit
criterion as the range of values can vary from one dataset to another. In general, higher values
indicate the likelihood of a point being an outlier.

[

"input.las",

{
"type":"filters.planefit",

"knn":8
Iy

"output.laz"

Options

knn The number of k nearest neighbors. [Default: 8]

threads The number of threads used for computing the plane fit criterion. [Default: 1]

180 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.pmf

The Progressive Morphological Filter (PMF) is a method of segmenting ground and
non-ground returns. This filter is an implementation of the method described in [Zhang2003]
(page 540).

Default Embedded Stage
This stage is enabled by default

Example

"input.las",
{

"type":"filters.pmf"
Hy

"output.las"

Notes

* slope (page 182) controls the height threshold at each iteration. A slope of 1.0 represents
a1:1 or 45°.

e initial_distance (page 182) is _intended_ to be set to account for z noise, so for a flat
surface if you have an uncertainty of around 15 cm, you set initial_distance (page 182)
large enough to not exclude these points from the ground.

* For a given iteration, the height threshold is determined by multiplying slope by cell_size
(page 182) by the difference in window size between the current and last iteration, plus
the initial_distance (page 182). This height threshold is constant across all cells and is
maxed out at the max_distance (page 182) value. If the difference in elevation between a
point and its “opened” value (from the morphological operator) exceeds the height
threshold, it is treated as non-ground. So, bigger slope leads to bigger height thresholds,
and these grow with each iteration (not to exceed the max). With flat terrain, keep this
low, the thresholds are small, and stuff is more aggressively dumped into non-ground
class. In rugged terrain, open things up a little, but then you can start missing buildings,
veg, etc.

* Very large max_window_size (page 182) values will result in a lot of potentially extra
iteration. This parameter can have a strongly negative impact on computation
performance.

7.4. Filters 181

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

* exponential (page 182) is used to control the rate of growth of morphological window
sizes toward max_window_size (page 182). Linear growth preserves gradually changing
topographic features well, but demands considerable compute time. The default behavior
is to grow the window sizes exponentially, thus reducing the number of iterations.

* This filter will mark all returns deemed to be ground returns with a classification value of
2 (per the LAS specification). To extract only these returns, users can add a range filter
(page 214) to the pipeline.

"type":"filters.range",
"limits":"Classification[2:2]"

Note: [Zhang2003] (page 540) describes the consequences and relationships of the
parameters in more detail and is the canonnical resource on the topic.

Options

cell_size Cell Size. [Default: 1]

exponential Use exponential growth for window sizes? [Default: true]
ignore Range of values to ignore. [Optional]

initial_distance Initial distance. [Default: 0.15]

returns Comma-separated list of return types into which data should be segmented. Valid
groups are “last”, “first”, “intermediate” and “only”. [Default: “last, only”]

max_distance Maximum distance. [Default: 2.5]
max_window_size Maximum window size. [Default: 33]

slope Slope. [Default: 1.0]

filters.radialdensity

The Radial Density filter creates a new attribute RadialDensity that contains the density
of points in a sphere of given radius.

The density at each point is computed by counting the number of points falling within a sphere
of given radius (page 183) (default is 1.0) and centered at the current point. The number of
neighbors (including the query point) is then normalized by the volume of the sphere, defined

182 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

as
4

V= §7T7“3

The radius r can be adjusted by changing the radius (page 183) option.

Default Embedded Stage
This stage is enabled by default

Example

"input.las",

{
"type":"filters.radialdensity",
"radius":2.0

"type":"writers.bpf",
"filename":"output.bpf",
"output_dims":"X, Y, Z,RadialDensity"

Options

radius Radius. [Default: 1.0]

filters.reciprocity

The Nearest-Neighbor Reciprocity Criterion was introduced in [Weyrich2004] (page 540)
and is based on a simple assumption, that valid points may be in the k-neighborhood of an
outlier, but the outlier will most likely not be part of the valid point’s k-neighborhood.

The author suggests that the Nearest-Neighbor Reciprocity Criterion is more robust than both
the Plane Fit (page 179) and Miniball (page 169) Criterion, being equally sensitive around
smooth and detailed regions. The criterion does however produce invalid reslts near manifold
borders.

The filter creates a single new dimension, Reciprocity, that records the percentage of
points(in the range 0 to 100) that are considered uni-directional neighbors of the current point.

7.4. Filters 183

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: To inspect the newly created, non-standard dimensions, be sure to write to an output
format that can support arbitrary dimensions, such as BPF.

Default Embedded Stage
This stage is enabled by default

Example

The sample pipeline below computes reciprocity with a neighborhood of 8 neighbors, followed
by a range filter to crop out points whose Reciprocity percentage is less than 98% before
writing the output.

[

"input.las",

{
"type":"filters.reciprocity",
"knn":8
br
{
"type":"filters.range",
"limits":"Reciprocity[:98.0]"
br

"output.laz"

Options

knn The number of k nearest neighbors. [Default: 8]

filters.skewnessbalancing

Skewness Balancing classifies ground points based on the approach outlined in /Bartels2010]
(page 539).

Default Embedded Stage
This stage is enabled by default

184 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: For Skewness Balancing to work well, the scene being processed needs to be quite flat,
otherwise many above ground features will begin to be included in the ground surface.

Example

The sample pipeline below uses the Skewness Balancing filter to segment ground and
non-ground returns, using default options, and writing only the ground returns to the output
file.

[

"input.las",

{
"type":"filters.skewnessbalancing"

b

{
"type":"filters.range",
"limits":"Classification[2:2]"

b

"output.laz"

Options

Note: The Skewness Balancing method is touted as being threshold-free. We may still in the
future add convenience parameters that are common to other ground segmentation filters, such
as returns or ignore to limit the points under consideration for filtering.

filters.smrf

The Simple Morphological Filter (SMRF) classifies ground points based on the approach
outlined in [Pingel2013] (page 540).

Default Embedded Stage
This stage is enabled by default

7.4. Filters 185

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example #1

The sample pipeline below uses the SMREF filter to segment ground and non-ground returns,
using default options, and writing only the ground returns to the output file.

[

"input.las",

{
"type":"filters.smrf"

}l

{
"type":"filters.range",
"limits":"Classification[2:2]"

by

"output.laz"

Example #2

A more complete example, specifying some options. These match the optimized parameters
for Sample 1 given in Table 3 of [Pingel2013] (page 540).

[

"input.las",

{
"type":"filters.smrf",

"scalar":1.2,
"slope":0.2,
"threshold":0.45,
"window":16.0

"type":"filters.range",
"limits":"Classification[2:2]"

}

"output.laz"

Options

cell Cell size. [Default: 1.0]

classbits Selectively ignore points marked as “synthetic”, “keypoint”, or “withheld”. [Default:
empty string, use all points]

186 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

cut Cut net size (cut=0 skips the net cutting step). [Default: 0.0]
dir Optional output directory for debugging intermediate rasters.
ignore A range (page 215) of values of a dimension to ignore.

returns Return types to include in output. Valid values are “first”, “last”, “intermediate” and
“only”. [Default: “last, only”’]

scalar Elevation scalar. [Default: 1.25]
slope Slope (rise over run). [Default: 0.15]
threshold Elevation threshold. [Default: 0.5]
window Max window size. [Default: 18.0]

[ilters.approximatecoplanar (page 141) Estimate pointwise planarity, based on k-nearest
neighbors. Returns a new dimension Coplanar where a value of 1 indicates that a
point is part of a coplanar neighborhood (0 otherwise).

filters.assign (page 142) Assign values for a dimension range to a specified value.

filters.cluster (page 143) Extract and label clusters using Euclidean distance metric. Returns a
new dimension ClusterID that indicates the cluster that a point belongs to. Points not
belonging to a cluster are given a cluster ID of 0.

filters.dbscan (page 152) Perform Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [Ester1996] (page 539).

filters.colorinterp (page 144) Assign RGB colors based on a dimension and a ramp

[ilters.colorization (page 147) Fetch and assign RGB color information from a
GDAL-readable datasource.

filters.covariancefeatures (page 149) Filter that calculates local features based on the
covariance matrix of a point’s neighborhood.

[ilters.csf (page 151) Label ground/non-ground returns using /Zhang2016] (page 540).
filters.eigenvalues (page 153) Compute pointwise eigenvalues, based on k-nearest neighbors.
filters.estimaterank (page 154) Compute pointwise rank, based on k-nearest neighbors.
filters.elm (page 155) Marks low points as noise.

[ilters.ferry (page 157) Copy data from one dimension to another.

filters.hag Compute pointwise height above ground estimate. Requires points to be classified
as ground/non-ground prior to estimating.

filters.hag_delaunay (page 159) Compute pointwise height above ground using triangulation.
Requires points to classified as ground/non-ground prior to estimating.

filters.hag_dem (page 161) Compute pointwise height above GDAL-readable DEM raster.

7.4. Filters 187

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.lof (page 168) Compute pointwise Local Outlier Factor (along with K-Distance and
Local Reachability Distance).

filters.miniball (page 169) Compute a criterion for point neighbors based on the miniball
algorithm.

[ilters.neighborclassifier (page 170) Update pointwise classification using k-nearest neighbor
consensus voting.

filters.nndistance (page 172) Compute a distance metric based on nearest neighbors.

filters.normal (page 173) Compute pointwise normal and curvature, based on k-nearest
neighbors.

filters.outlier (page 174) Label noise points using either a statistical or radius outlier detection.

filters.overlay (page 178) Assign values to a dimension based on the extent of an
OGR-readable data source or an OGR SQL query.

[ilters.planefit (page 179) Compute a deviation of a point from a manifold approximating its
neighbors.

filters.pmf (page 181) Label ground/non-ground returns using [Zhang2003] (page 540).
filters.radialdensity (page 182) Compute pointwise density of points within a given radius.

[ilters.reciprocity (page 183) Compute the percentage of points that are considered
uni-directional neighbors of a point.

filters.skewnessbalancing (page 184) Label ground/non-ground returns using [Bartels2010]
(page 539).

filters.smrf (page 185) Label ground/non-ground returns using /Pingel2013] (page 540).

7.4.2 Order

There are currently three PDAL filters that can be used to reorder points. These filters will
invalidate an existing KD-tree.

filters.mortonorder

Sorts the XY data using Morton ordering (http://en.wikipedia.org/wiki/Z-order_curve).

It’s also possible to compute a reverse Morton code by reading the binary representation from
the end to the beginning. This way, points are sorted with a good dispersement. For example,
by successively selecting N representative points within tiles:

See also:

188 Chapter 7. Drivers

http://en.wikipedia.org/wiki/Z-order_curve

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

100 100 100
e o o o e o o o ® o o o
° ®e co0 osee oo oggoe coe o
80 80 80
e o o o e o o o e o o o
L] L] L] L] L] L] 00 © O Omee o o emee o o oy
60 60 60
e o o o e o o o o o o o
> > >
o w0 ° © ®e co0 osee oo oggoe coe o
e e o o e o o o * o o o
20 20 . L] L] L] (] (] 20 ee © o o%oee o o ohee o o oo
e & o o e o o o e & & o
o o)
) 50 100 150 200 250 300 o 50 100 150 200 250 300 o 50 100 150 200 250 300
100 100 100 CRRRRR R) R R R R R R) I T YTy
eecccccodecccccccdocccccocyd foo 0oe 0o 00s cesfer ese eoo aoe cocfer eoe coo coo ced)))
e o o o e o o o e o o o (XXX IL EXXXTXXEY XXX Y (30X X XX X) £ 3 3 X X X X) ¢ 3 3 3 X X
0000000 OIRNOOCOIOIOCIOIOIINBOIGOIOIOSIOSIOIONIY
80 80 (XXX TL CEXXTYNEY XXX Y 80 ¢ 3 X X 3 X X) ¢ 3 3 3 3 X X) ¢ 3 3 3 3 X X
0080000 IGIOIIINBOIGOIGIOINININY POO SO0 SO0 S00 SO0 500 000 500 S0NNES 000 000 000 000
e o o o e o o o e o o o eccccccoeccccccoggocccccocd sgegogedogegon sgegogesogegon gejogesogeson:
eccccccocecccccocgocccccncy bosssce coscese esscese esssces coef 0
60 60
eccccccoseccccccogocccccocd gogogegogefos: go3egegogeton: sgogegetossios
eccccccocecccccocgocccccncy boo 000 000 000 Goajee 600 000 000 Gostes 000 000 000 cosf . ‘)))
= * o o o e o o o e o o o > (XXX IXI L XXX XXXXXXXXY £33 XXX X) £ 3 3 3 X X X) ¢ 33 3 3 X X
20 000000 OOIRNOCOIOCICIOIOIINBOIOCOIOIOOIOISIY 0 son] 20
(XXX TL CEXRTYNYY XXX Y ¢ 3 X X 3 X X) ¢ 3 X X 3 X X) ¢ 333 3 3 X X
000000 OIROGOIIIOSIOIOIINBOIOGOIOSIOIOSIONINY POO SO0 000 000 G0Ny
s o o o e o o o e o o o seccccssy ¢ 3 X X 3 X X) ¢ 3 3 3 3 X X) ¢ 33 3 3 3 X X
20 00000000 GGIGIOIIINBOIGIOIGIGIGIIGY 20 bttt Sibibbbs 20
° ° ° oocccccey XXX X X X) $333339% $33%¢¢¢
eccccccococccccocgocccccocy boo eoo 0oo e centee eso ')))
. e o o o e o o o e o o o . eccccccoseccccccogocccccocd . $ogogegogafon: gogegegogeton: sfogegetossion
0 50 100 150 200 250 300 [} 50 100 150 200 250 300 o 50 100 150 200 250 300
x x x

See LOPoCS (https://github.com/Oslandia/lopocs) and pgmorton
(https://github.com/Oslandia/pgmorton) for some use case examples of the Reverse Morton
algorithm.

Default Embedded Stage
This stage is enabled by default

Example

"uncompressed.las",

{
"type":"filters.mortonorder",
"reverse":"false"

y

"type":"writers.las",
"filename":"compressed.laz",
"compression":"true"

7.4. Filters 189

https://github.com/Oslandia/lopocs
https://github.com/Oslandia/pgmorton

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

None.

filters.randomize

The randomize filter reorders the points in a point view randomly.

Default Embedded Stage
This stage is enabled by default

Example

"input.las",
{
"type":"filters.randomize"
by
{
"type":"writers.las",
"filename": "output.las"

Options

None.

filters.sort

The sort filter orders a point view based on the values of a dimension (page 191). The sorting
can be done in increasing (ascending) or decreasing (descending) order (page 191).

Default Embedded Stage
This stage is enabled by default

190 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example

"unsorted.las",

{
"type":"filters.sort",
"dimension":"X",
"order" :"ASC"

ty

"sorted.las"

Options

dimension The dimension on which to sort the points. [Required]

order The order in which to sort, ASC or DESC [Default: “ASC”]

filters.mortonorder (page 188) Sort XY data using Morton ordering (aka Z-order/Z-curve).
filters.randomize (page 190) Randomize points in a view.

filters.sort (page 190) Sort data based on a given dimension.

7.4.3 Move

PDAL filters that move XYZ coordinates will invalidate an existing KD-tree.

filters.cpd

The Coherent Point Drift (CPD) filter uses the algorithm of /MS/70] (page 539) algorithm to
compute a rigid, nonrigid, or affine transformation between datasets. The rigid and affine are
what you’d expect; the nonrigid transformation uses Motion Coherence Theory [YG8S8]

(page 539) to “bend” the points to find a best alignment.

Note: CPD is computationally intensive and can be slow when working with many points (i.e.
> 10,000). Nonrigid is significatly slower than rigid and affine.

The first input to the change filter are considered the “fixed” points, and all subsequent inputs
are “moving”’ points. The output from the change filter are the “moving” points after the
calculated transformation has been applied, one point view per input. Any additional
information about the cpd registration, e.g. the rigid transformation matrix, will be placed in
the stage’s metadata.

7.4. Filters 191

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

When to use CPD vs ICP

Summarized from the Non-rigid point set registration: Coherent Point Drift
(http://graphics.stanford.edu/courses/cs468-07-winter/Papers/nips2006_0613.pdf) paper.

* CPD outperforms the ICP in the presence of noise and outliers by the use of a
probabilistic assignment of correspondences between pointsets, which is innately more
robust than the binary assignment used in ICP.

* CPD does not work well for large in-plane rotation, such transformation can be first
compensated by other well known global registration techniques before CPD algorithm
is carried out

* CPD is most effective when estimating smooth non-rigid transformations.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Examples

"fixed.las",
"moving.las",

{
"type": "filters.cpd",
"method": "rigid"

br
"output.las"

]

If method (page 193) is not provided, the cpd filter will default to using the rigid registration
method. To get the transform matrix, you’ll need to use the “metadata” option of the pipeline
command:

$ pdal pipeline cpd-pipeline.json ——metadata cpd-metadata.json

The metadata output might start something like:

{

"stages":

{
"filters.cpd":

{

"iterations": 10,

192 Chapter 7. Drivers

http://graphics.stanford.edu/courses/cs468-07-winter/Papers/nips2006_0613.pdf

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"method": "rigid",
"runtime": 0.003839,
"sigma2": 5.684342128e-16,

"transform": " 1 -6.21722e-17 1.30104e-18 5.
+29303e—-11-8.99346e—-17 1 2.60209e-18 —-3.49247e-10 -2.
—1684e-19 1.73472e-18 1 -1.53477e-12 0 .
— 0 0 1w

by
ty

See also:

filters.transformation (page 199) to apply a transform to other points. filters.icp (page 193) for
deterministic binary point pair assignments.

Options

method Change detection method to use. Valid values are “rigid”, “affine”, and “nonrigid”.
[Default: “rigid”*]

filters.icp

The ICP filter uses the Iterative Closest Point (ICP) algorithm to calculate a rigid (rotation and
translation) transformation that best aligns two datasets. The first input to the ICP filter is
considered the “fixed” points, and all subsequent points are “moving” points. The output from
the filter are the “moving” points after the calculated transformation has been applied, one
point view per input. The transformation matrix is inserted into the stage’s metadata.

Note: ICP requires the initial pose of the two point sets to be adequately close, which is not
always possible, especially when the transformation is non-rigid. ICP can handle limited
non-rigid transformations but be aware ICP may be unable to escape a local minimum.
Consider using CPD instead.

From [Xuechen2019]:

ICP starts with an initial guess of the transformation between the two point sets and then
iterates between finding the correspondence under the current transformation and updating the
transformation with the newly found correspondence. ICP is widely used because it is rather
straightforward and easy to implement in practice; however, its biggest problem is that it does
not guarantee finding the globally optimal transformation. In fact, ICP converges within a very
small basin in the parameter space, and it easily becomes trapped in local minima. Therefore,
the results of ICP are very sensitive to the initialization, especially when high levels of noise
and large proportions of outliers exist.

7.4. Filters 193

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Examples

"fixed.las",
"moving.las",

{
"type": "filters.icp"

}y

"output.las"

To get the transform matrix, you’ll need to use the ——metadata option from the pipeline
command:

S pdal pipeline icp-pipeline.json ——metadata icp-metadata.json

The metadata output might start something like:

{
"stages":
{
"filters.icp":
{
"centroid": " 583394 5.2831e+06 498.152",
"converged": true,
"fitness": 0.01953125097,

"transform": " 1 2.60209e-18 -1.97906e-09 -
- =0.375 8.9407e-08 1 5.58794e-09 -0.5625 6.
—-98492e -10 -5.58794e-09 1 0.00411987 0 -
o 0 0 "

}

To apply this transformation to other points, the centroid and transform metadata items can by
used with filters.transform in another pipeline. First, move the centroid of the points to (0,0,0),
then apply the transform, then move the points back to the original location. For the above
metadata, the pipeline would be similar to:

[

"type": "readers.las",
"filename": "in.las"
by
{
"type": "filters.transformation",
"matrix": "1 0 0 -583394 0 1 0 -5.2831e+06 0 0 1 —-498.

152 0 001"
by

194 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type": "filters.transformation",
"matrix": "1 2.60209e-18 -1.97906e-09 -0.375 8.9407e-
08 1 5.58794e-09 -0.5625 6.98492e -10 -5.58794e-
09 1 0.00411987 0 0 0.
o "
b
{
"type": "filters.transformation",
"matrix": "1 0 0 583394 0 1 0 5.2831e+06 0 O 1 498.152 O
-0 0 1"
bo
{
"type": "writers.las",
"filename": "out.las"
}
]
See also:

filters.transformation (page 199) to apply a transform to other points. filters.cpd (page 191) for
the use of a probabilistic assignment of correspondences between pointsets.

Options

max_iter Maximum number of iterations. [Default: 100]

max_similar Max number of similar transforms to consider converged. [Default: 0]
mse_abs Absolute threshold for MSE. [Default: 1e-12]

rt Rotation threshold. [Default: 0.99999]

tt Translation threshold. [Default: 9e-8]

filters.projpipeline

The projpipeline filter applies a coordinates transformation pipeline. The pipeline could be
specified as PROJ string (single step operation or multiple step string starting with
+proj=pipeline), a WKT?2 string describing a CoordinateOperation, or a
“urn:ogc:def:coordinateOperation:EPSG:: XXXX” URN.

Note: The projpipeline filter does not consider any spatial reference information. However
user could specify an output srs, but no check is done to ensure the compliance with the
provided transformation pipeline.

7.4. Filters 195

urn:ogc:def:coordinateOperation:EPSG::XXXX

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: The projpipeline filter is enabled if the version of GDAL is superior or equal to 3.0

Streamable Stage

This stage supports streaming operations

Example

This example shift point on the z-axis.

[

"untransformed.las",

{
"type":"filters.projpipeline",
"coord_op":"+proj=affine +zoff=100"

"type":"writers.las",
"filename":"transformed.las"

This example apply a shift on the z-axis then reproject from utm 10 to WGS84, using the
reverse transfo flag. It also set the output srs

[

"utmlO.las",
{

"type":"filters.projpipeline",

"coord op":"+proj=pipeline +step +proj=unitconvert +xy_
—~in=deg +xy_out=rad +step +proj=utm +zone=10 +step +proj=affine
—+zoff=100",

"reverse_transfo": "true",

"out_srs": "EPSG:4326"

br
{

"type":"writers.las",
"filename":"wgs84.las"

Note: PDAL use the GDAL OGRCoordinateTransformation class to transform coordinates.

196 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

By default output angular unit are in radians. To change to degrees we need to apply a unit
conversion step.

Options

coord_op The coordinate operation string. Could be specified as PROJ string (single step
operation or multiple step string starting with +proj=pipeline), a WKT?2 string describing
a CoordinateOperation, or a “urn:ogc:def:coordinateOperation:EPSG:: XXXX” URN.

reverse_transfo Boolean, Whether the coordinate operation should be evaluated in the reverse
path [Default: false]

out_srs The spatial reference system of the file to be written. Can be an EPSG string (e.g.
“EPSG:26910”) or a WKT string. No check is done to ensure the compliance with the
specified coordinate operation [Default: Not set]

filters.reprojection

The reprojection filter converts the X, Y and/or Z dimensions to a new spatial reference
system. The old coordinates are replaced by the new ones. If you want to preserve the old
coordinates for future processing, use a filters.ferry (page 157) to create copies of the original
dimensions before reprojecting.

Note: When coordinates are reprojected, it may significantly change the precision necessary
to represent the values in some output formats. Make sure that you’re familiar with any scaling
necessary for your output format based on the projection you’ve used.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example 1

This pipeline reprojects terrain points with Z-values between 0 and 100 by first applying a
range filter and then specifing both the input and output spatial reference as EPSG-codes. The

7.4. Filters 197

urn:ogc:def:coordinateOperation:EPSG::XXXX

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

X and Y dimensions are scaled to allow enough precision in the output coordinates.

[

"filename":"input.las",
"type":"readers.las",
"spatialreference":"EPSG:26916"

"type":"filters.range",

"limits":"Z2[0:100],Classification[2:

"type":"filters.reprojection",
"in srs":"EPSG:26916",
"out_srs":"EPSG:4326"

"type":"writers.las",
"scale_x":"0.0000001",
"scale_y":"0.0000001",
"scale_z":"0.01",
"offset_x":"auto",
"offset_y":"auto",
"offset_z":"auto",
"filename":"example—-geog.las"

Example 2

2]"

In some cases it is not possible to use a EPSG-code as a spatial reference. Instead Proj.4
(http:/proj4.org) parameters can be used to define a spatial reference. In this example the
vertical component of points in a laz file is converted from geometric (ellipsoidal) heights to
orthometric heights by using the geoidgrids parameter from Proj.4. Here we change the
vertical datum from the GRS80 ellipsoid to DVR90, the vertical datum in Denmark. In the
writing stage of the pipeline the spatial reference of the file is set to EPSG:7416. The last step
is needed since PDAL will otherwise reference the vertical datum as “Unnamed Vertical
Datum” in the spatial reference VLR.

[

", /1lkm_6135_632.laz",

{

"type":"filters.reprojection",
"in srs":"EPSG:25832",

198

Chapter 7. Drivers

http:/proj4.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"out_srs":"+init=epsg:25832 +geoidgrids=C:/data/geoids/dvr90.

—gtx"
y
{
"type":"writers.las",
"a_srs":"EPSG:7416",
"filename":"1lkm_6135_632_DVR90.laz"
}
]
Options

in_srs Spatial reference system of the input data. Express as an EPSG string (eg
“EPSG:4326” for WGS84 geographic), Proj.4 string or a well-known text string.
[Required if not part of the input data set]

out_srs Spatial reference system of the output data. Express as an EPSG string (eg
“EPSG:4326” for WGS84 geographic), Proj.4 string or a well-known text string.
[Required]

in_axis_ordering An array of numbers that override the axis order for the in_srs (or if not
specified, the inferred SRS from the previous Stage). “2, 17 for example would swap X
and Y, which may be commonly needed for something like “EPSG:4326”.

out_axis_ordering An array of numbers that override the axis order for the out_srs. “2, 1” for
example would swap X and Y, which may be commonly needed for something like
“EPSG:4326.

filters.transformation

The transformation filter applies an arbitrary rotation+translation transformation, represented
as a 4x4 matrix (page 200), to each xyz triplet.

The filter does no checking to ensure the matrix is a valid affine transformation.

Note: The transformation filter does not apply or consider any spatial reference information.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

7.4. Filters 199

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This stage supports streaming operations

Example

This example rotates the points around the z-axis while translating them.

[

"untransformed.las",

{

"type":"filters.transformation",
"matrix":"0 -1 0 1 1 0 O 2 O O 1 3 O O o0 1"

"type":"writers.las",
"filename":"transformed.las"

Options

matrix A whitespace-delimited transformation matrix. The matrix is assumed to be presented
in row-major order. Only matrices with sixteen elements are allowed.

Further details

A full tutorial about transformation matrices is beyond the scope of this documentation.
Instead, we will provide a few pointers to introduce core concepts, especially as pertains to
PDAL’s handling of the mat rix argument.

Transformations in a 3-dimensional coordinate system can be represented as an affine
transformation using homogeneous coordinates. This 4x4 matrix can represent transformations
describing operations like translation, rotation, and scaling of coordinates.

The transformation filter’s mat rix argument is a space delimited, 16 element string. This
string is simply a row-major representation of the 4x4 matrix (i.e., first four elements
correspond to the top row of the transformation matrix and so on).

In the event that readers are accustomed to an alternate representation of the transformation
matrix, we provide some simple examples in the form of pure translations, rotations, and
scaling, and show the corresponding mat rix string.

200 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Translation

A pure translation by t,, t,,, and ¢, in the X, Y, and Z dimensions is represented by the
following matrix.

~
<

183

o O O
o O = O
o= O O

The JSON syntax required for such a translation is written as follows for ¢, = 7, ¢, = 8, and
t,=09.

[

"type":"filters.transformation",
"matrix":"1. 0 0 7 0 1 O 8 O O 1 9 0O O O 1"

Scaling

Scaling of coordinates is also possible using a transformation matrix. The matrix shown below
will scale the X coordinates by s, the Y coordinates by s, and Z by s..

s 00 0
0 s, 00
0 0 s, 0
0 0 1

We again provide an example JSON snippet to demonstrate the scaling transformation. In the
example, X and Y are not scaled at all (i.e., s, = s, = 1) and Z is magnified by a factor of 2

(s, =2).
[

"type":"filters.transformation",
"matrix":"1 0 O 0O O 1 O O O O 2 O O 0 O 1"

7.4. Filters 201

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Rotation

A rotation of coordinates by 6 radians counter-clockswise about the z-axis is accomplished
with the following matrix.

cosf —sinfd 0 0O
sinf cosé 0 O
0 0 10
0 0 01

In JSON, a rotation of 90 degrees (# = 1.57 radians) takes the form shown below.

[

"type":"filters.transformation",
"matrix":"0 0 -1 0 1 0 O O O O 1 O O O 0o 1"

]

Similarly, a rotation about the x-axis by 6 radians is represented as

1 0 0 0
0 cosf —sinf 0
0 sinf cosf O
0 O 0 1

which takes the following form in JSON for a rotation of 45 degrees (= 0.785 radians)

[

"type":"filters.transformation",
"matrix":"1 0 O O O 0.707 -0.707 O O 0.707 0.707 _
<0 0 0 0 1"
}
]

Finally, a rotation by f radians about the y-axis is accomplished with the matrix

cos# 0 sinf O
0 1 0 0
—sinf 0 cosf O
0 0O 0 1

and the JSON string for a rotation of 10 degrees (¢ = 0.175 radians) becomes

[

"type":"filters.transformation",

202 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"matrix":"0.985 0 0.174 0 O 1 O O -0.174 0 0.985 _
-0 0 0 0 1"

}
]

filters.cpd (page 191) Compute and apply transformation between two point clouds using the
Coherent Point Drift algorithm.

[ilters.icp (page 193) Compute and apply transformation between two point clouds using the
Iterative Closest Point algorithm.

filters.projpipeline (page 195) Apply coordinates operation on point triplets, based on PROJ
pipeline string, WKT2 coordinates operations or URN definitions.

[ilters.reprojection (page 197) Reproject data using GDAL from one coordinate system to
another.

filters.transformation (page 199) Transform each point using a 4x4 transformation matrix.

7.4.4 Cull

Some PDAL filters will cull points, returning a point cloud that is smaller than the input. These
filters will invalidate an existing KD-tree.

filters.crop

The crop filter removes points that fall outside or inside a cropping bounding box (2D or 3D),
polygon, or point+distance. If more than one bounding region is specified, the filter will pass
all input points through each bounding region, creating an output point set for each input crop
region.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

The provided bounding regions are assumed to have the same spatial reference as the points
unless the option a_srs (page 205) provides an explicit spatial reference for bounding regions.
If the point input consists of multiple point views with differing spatial references, one is

7.4. Filters 203

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

chosen at random and assumed to be the spatial reference of the input bounding region. In this
case a warning will be logged.

Example 1

This example crops an input point cloud using a square polygon.

[
"file-input.las",
{
"type":"filters.crop",

"bounds":" ([0,1000000], [0,10000007)"

"type":"writers.las",
"filename":"file-cropped.las"

Example 2

This example crops all points more than 500 units in any direction from a point.

[
"file-input.las",
{
"type":"filters.crop",
"point":"POINT (0 O 0)",
"distance": 500

"type":"writers.las",
"filename":"file-cropped.las"

Options

bounds The extent of the clipping rectangle in the format " ([xmin, =xmax], [ymin,
ymax]) ". This option can be specified more than once by placing values in an array.

Note: 3D bounds can be given in the form ([xmin, xmax], [ymin, ymax],

204 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

[zmin, zmax]).

Warning: If a 3D bounds is given to the filter, a 3D crop will be attempted, even if
the Z values are invalid or inconsistent with the data.

polygon The clipping polygon, expressed in a well-known text string, eg: "POLYGON ((0
0, 5000 10000, 10000 0O, O 0))". This option can be specified more than
once by placing values in an array.

outside Invert the cropping logic and only take points outside the cropping bounds or polygon.
[Default: false]

point An array of WKT or GeoJSON 2D or 3D points (eg: "POINT (0 0 0) "). Requires
distance (page 205).

distance Distance (radius) in units of common X, Y, and Z Dimensions (page 251) in
combination with point (page 205). Passing a 2D point will crop using a circle. Passing a
3D point will crop using a sphere.

a_srs Indicates the spatial reference of the bounding regions. If not provided, it is assumed
that the spatial reference of the bounding region matches that of the points.

Notes

1. See Clipping data with polygons (page 324): and Clipping with Geometries (page 288)
for example usage scenarios for filters.crop (page 203).

filters.decimation

The decimation filter retains every Nth point from an input point view.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

7.4. Filters 205

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example
[
{
"type": "readers.las",
"filename": "larger.las"
} r
{
"type":"filters.decimation",
"step": 10
} r
{
"type":"writers.las",
"filename":"smaller.las"
}
]
See also:

filters.voxelgrid provides grid-style point decimation.

Options

step Number of points to skip between each sample point. A step of 1 will skip no points. A
step of 2 will skip every other point. A step of 100 will reduce the input by ~99%.
[Default: 1]

offset Point index to start sampling. Point indexes start at 0. [Default: 0]

limit Point index at which sampling should stop (exclusive). [Default: No limit]

filters.farthestpointsampling

The Farthest Point Sampling Filter adds points from the input to the output PointView
one at a time by selecting the point from the input cloud that is farthest from any point
currently in the output.

See also:

filters.sample (page 216) produces a similar result, but while filters.sample allows us to
target a desired separation of points via the radius parameter at the expense of knowing the
number of points in the output, filters.farthestpointsampling allows us to
specify exactly the number of output points at the expense of knowing beforehand the spacing
between points.

206 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Default Embedded Stage
This stage is enabled by default

Options

count Desired number of output samples. [Default: 1000]

filters.head

The Head filter returns a specified number of points from the beginning of a PointView.

Note: If the requested number of points exceeds the size of the point cloud, all points are
passed with a warning.

Default Embedded Stage
This stage is enabled by default

Example #1

Thin a point cloud by first shuffling the point order with filters.randomize (page 190) and then
picking the first 10000 using the HeadFilter.

[
{
"type":"filters.randomize"
}I
{
"type":"filters.head",

"count":10000

Example #2

Compute height above ground and extract the ten highest points.

7.4. Filters 207

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"filters.smrf"

"type":"filters.hag"

"type":"filters.sort",
"dimension": "HeightAboveGround",
"order" :"DESC"

"type":"filters.head",
"count":10
]

See also:

filters.tail (page 217) is the dual to filters.head (page 207).

Options

count Number of points to return. [Default: 10]

filters.igr

The Interquartile Range Filter automatically crops the input point cloud based on the
distribution of points in the specified dimension. The Interquartile Range (IQR) is defined as
the range between the first and third quartile (25th and 75th percentile). Upper and lower
bounds are determined by adding 1.5 times the IQR to the third quartile or subtracting 1.5
times the IQR from the first quartile. The multiplier, which defaults to 1.5, can be adjusted by
the user.

Note: This method can remove real data, especially ridges and valleys in rugged terrain, or
tall features such as towers and rooftops in flat terrain. While the number of deviations can be
adjusted to account for such content-specific considerations, it must be used with care.

Default Embedded Stage
This stage is enabled by default

208 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example

The sample pipeline below uses the filter to automatically crop the Z dimension and remove
possible outliers. The multiplier to determine high/low thresholds has been adjusted to be less
agressive and to only crop those outliers that are greater than the third quartile plus 3 times the
IQR or are less than the first quartile minus 3 times the IQR.

[

"input.las",

{
"type":"filters.iqr",
"dimension":"7Z",
"k":3.0

}o

"output.laz"

Options

k The IQR multiplier used to determine upper/lower bounds. [Default: 1.5]

dimension The name of the dimension to filter.

filters.locate

The Locate filter searches the specified dimension (page 210) for the minimum or maximum
value and returns a single point at this location. If multiple points share the min/max value, the
first will be returned. All dimensions of the input PointView will be output, subject to any
overriding writer options.

Default Embedded Stage
This stage is enabled by default

Example

This example returns the point at the highest elevation.

[

"input.las",

{
"type":"filters.locate",

7.4. Filters 209

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"dimension":"7",
"minmax":"max"

by

"output.las"

Options

dimension Name of the dimension in which to search for min/max value.

minmax Whether to return the minimum or maximum value in the dimension.

filters.mad

The MAD filter filter crops the input point cloud based on the distribution of points in the
specified dimension (page 211). Specifically, we choose the method of median absolute
deviation from the median (commonly referred to as MAD), which is robust to outliers (as
opposed to mean and standard deviation).

Note: This method can remove real data, especially ridges and valleys in rugged terrain, or
tall features such as towers and rooftops in flat terrain. While the number of deviations can be
adjusted to account for such content-specific considerations, it must be used with care.

Default Embedded Stage
This stage is enabled by default

Example

The sample pipeline below uses filters.mad to automatically crop the Z dimension and remove
possible outliers. The number of deviations from the median has been adjusted to be less
agressive and to only crop those outliers that are greater than four deviations from the median.

[
"input.las",
{
"type":"filters.mad",
"dimension":"Z",
"k":4.0
}y

210 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"output.laz"

Options

Kk The number of deviations from the median. [Default: 2.0]

dimension The name of the dimension to filter.

filters.mongo

The Mongo Filter applies query logic to the input point cloud based on a MongoDB-style
query expression using the point cloud attributes.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

This example passes through only the points whose Classification is non-zero.

[

"input.las",

{
"type": "filters.mongo",
"expression": {

"Classification": { "$ne": 0 }

t

}s

"filtered.las"

]

This example passes through only the points whose Ret urnNumber is equal to the
NumberOfReturns and the NumberOfReturns is greater than 1.

7.4. Filters

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"input.las",

{

"type": "filters.mongo",
"expression": { "$and": |
{ "ReturnNumber": "NumberOfReturns" },

{ "NumberOfReturns": { "$gt": 1 } }

Iy
"filtered.las"

Options

expression A JSON query Expression (page 212) containing a combination of query
comparisons and logical operators.

Expression

A query expression is a combination of comparison and logical operators that define a query
which can be used to select matching points by their attribute values.

Comparison operators

There are 8 valid query comparison operators:
* Seq: Matches values equal to a specified value.
* Sgt: Matches values greater than a specified value.
* Sgte: Matches values greater than or equal to a specified value.
e $1t: Matches values less than a specified value.
* $S1te: Matches values less than or equal to a specified value.
* Sne: Matches values not equal to a specified value.
* $in: Matches any of the values specified in the array.
* $nin: Matches none of the values specified in the array.

Comparison operators compare a point cloud attribute with an operand or an array of operands.
An operand is either a numeric constant or a string representing a dimension name. For all
comparison operators except for $in and $nin, the comparison value must be a single
operand. For $in and $nin, the value must be an array of operands.

212 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Comparison operator specifications must be contained within an object whose key is the
dimension name to be compared.

{ "Classification": { "$eq": 2 } }
{ "Intensity": { "$gt": 0 } }
{ "Classification": { "$in": [2, 6, 9] } }

The $eqg comparison operator may be implicitly invoked by setting an attribute name directly
to a value.

{ "Classification": 2 }

Logical operators

There are 4 valid logical operators:

$and: Applies a logical and on the expressions of the array and returns a match only if
all expressions match.

Snot: Inverts the value of the single sub-expression.

$nor: Applies a logical nor on the expressions of the array and returns a match only if
all expressions fail to match.

Snor: Applies a logical or on the expressions of the array and returns a match if any of
the expressions match.

Logical operators are used to logically combine sub-expressions. All logical operators except
for $not are applied to arrays of expressions. $not is applied to a single expression and
negates its result.

Logical operators may be applied directly to comparison expressions or may contain further
nested logical operators. For example:

{ "$or" : [
{ "Classification": 2 },
{ "Intensity": { "$gt": 0 } }

{ |l$°r" . [
{ "Classification": 2 },
{ "$and": |

{ "ReturnNumber": "NumberOfReturns" 1},
{ "NumberOfReturns": { "$gt": 1 } }

7.4. Filters 213

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

{ "$1’10t" : {
"$or" : [
{ "Classification": 2 },
{ "$and": |
{ "ReturnNumber": { "$gt": 0 } },
{ "z": { "S$lte": 42 } }

}

For any individual dimension, the logical and may be implicitly invoked via multiple
comparisons within the comparison object. For example:

{ nxn: { Il$gtll: O, 'lsltll: 42 } }

filters.range

The Range Filter applies rudimentary filtering to the input point cloud based on a set of
criteria on the given dimensions.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Example

This example passes through all points whose Z value is in the range [0,100] and whose
Classification equals 2 (corresponding to ground in LAS).

[
"input.las",
{
"type":"filters.range",
"limits":"Z2[0:100],Classification[2:2]"

214 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"writers.las",
"filename":"filtered.las"

The equivalent pipeline invoked via the PDAL t ranslate command would be

$ pdal translate —-i input.las -o filtered.las -f range —--filters.
—range.limits="Z[0:100],Classification[2:2]"

Options

limits A comma-separated list of Ranges (page 215). If more than one range is specified for a
dimension, the criteria are treated as being logically ORed together. Ranges for different
dimensions are treated as being logically ANDed.

Example:

Classification[1l:2], Red[1:50], Blue[25:75], Red[75:255]
—~Classification[6:7]

[y

This specification will select points that have the classification of 1, 2, 6 or 7 and have a
blue value or 25-75 and have a red value of 1-50 or 75-255. In this case, all values are
inclusive.

Ranges

A range specification is a dimension name, followed by an optional negation character (‘!”),
and a starting and ending value separated by a colon, surrounded by parentheses or square
brackets. Either the starting or ending values can be omitted. Parentheses indicate an open
endpoint that doesn’t include the adjacent value. Square brackets indicate a closed endpoint
that includes the adjacent value.

Example 1:

z[10:]

Selects all points with a Z value greater than or equal to 10.

7.4. Filters 215

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example 2:

Classification[2:2]

Selects all points with a classification of 2.

Example 3:

Red! (20:40]

Selects all points with red values less than or equal to 20 and those with values greater than 40

Example 4:

Blue[:255)

Selects all points with a blue value less than 255.

Example 5:

Intensity! [25:25]

Selects all points with an intensity not equal to 25.

filters.sample

The Sample Filter performs Poisson sampling of the input PointView. The The practice of
performing Poisson sampling via “Dart Throwing” was introduced in the mid-1980’s by
[Cook1986] (page 539) and [Dippel985] (page 539), and has been applied to point clouds in
other software [Mesh2009] (page 540).

The sampling can be performed in a single pass through the point cloud. To begin, each input
point is assumed to be kept. As we iterate through the kept points, we retrieve all neighbors
within a given radius, and mark these neighbors as points to be discarded. All remaining
kept points are appended to the output PointView. The full layout (i.e., the dimensions) of
the input PointView is kept in tact (the same cannot be said for filters.voxelgrid).

See also:

filters.decimation (page 205) and filters.voxelgrid also perform decimation.

216 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Default Embedded Stage
This stage is enabled by default

Options

radius Minimum distance between samples. [Default: 1.0]

filters.tail

The Tail Filter returns a specified number of points from the end of the PointView.

Note: If the requested number of points exceeds the size of the point cloud, all points are
passed with a warning.

Default Embedded Stage
This stage is enabled by default

Example

Sort and extract the 100 lowest intensity points.
[

"type":"filters.sort",
"dimension":"Intensity",
"order" :"DESC"

"type":"filters.tail",
"count":100

See also:

filters.head (page 207) is the dual to filters.tail (page 217).

7.4. Filters 217

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

count Number of points to return. [Default: 10]

filters.voxelcenternearestneighbor

The VoxelCenterNearestNeighbor filter is a voxel-based sampling filter. The input point
cloud is divided into 3D voxels at the given cell size. For each populated voxel, the coordinates
of the voxel center are used as the query point in a 3D nearest neighbor search. The nearest
neighbor is then added to the output point cloud, along with any existing dimensions.

Note: This is similar to the existing filters.voxelgrid. However, in the case of the VoxelGrid,
the centroid of the points falling within the voxel is added to the output point cloud. The
drawback with this approach is that all dimensional data is lost, and the sampled cloud now
consists of only XYZ coordinates.

Default Embedded Stage
This stage is enabled by default

Example

"input.las",

{

"type":"filters.voxelcenternearestneighbor",
yp

"cell":10.0
by

"output.las"

]

See also:

filters.voxelcentroidnearestneighbor (page 219) offers a similar solution, using as the query
point the centroid of all points falling within the voxel as opposed to the voxel center
coordinates.

Options

cell Cell size in the X, Y, and Z dimension. [Default: 1.0]

218 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.voxelcentroidnearestneighbor

The VoxelCentroidNearestNeighbor Filter is a voxel-based sampling filter. The input point
cloud is divided into 3D voxels at the given cell size. For each populated voxel, we apply the
following ruleset. For voxels with only one point, the point is passed through to the output. For
voxels with exactly two points, the point closest the voxel center is returned. Finally, for voxels
with more than two points, the centroid of the points within that voxel is computed. This
centroid is used as the query point in a 3D nearest neighbor search (considering only those
points lying within the voxel). The nearest neighbor is then added to the output point cloud,
along with any existing dimensions.

Default Embedded Stage
This stage is enabled by default

Example

"input.las",

{

"type":"filters.voxelcentroidnearestneighbor",
"cell":10.0
}o

"output.las"

]

See also:

filters.voxelcenternearestneighbor (page 218) offers a similar solution, using the voxel center
as opposed to the voxel centroid for the query point.

Options

cell Cell size in the X, Y, and Z dimension. [Default: 1.0]

filters.voxeldownsize

The voxeldownsize filter is a voxel-based sampling filter. The input point cloud is divided into
3D voxels at the given cell size. For each populated voxel, either first point entering in the
voxel or center of a voxel (depending on mode argument) is accepted and voxel is marked as
populated. All other points entering in the same voxel are filtered out.

7.4. Filters 219

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example

"input.las",

{

"type":"filters.voxeldownsize",
"cell":1.0,
"mode" :"center"

by

"output.las"

]

See also:

[ilters.voxelcenternearestneighbor (page 218) offers a similar solution, using the coordinates of
the voxel center as the query point in a 3D nearest neighbor search. The nearest neighbor is
then added to the output point cloud, along with any existing dimensions.

Options

cell Cell size in the X, Y, and 7 dimension. [Default: 0.001]

mode Mode for voxel based filtering. [Default: center] center: Coordinates of the first point
found in each voxel will be modified to be the center of the voxel. first: Only the first
point found in each voxel is retained.

Warning: If you choose center mode, you are overwriting the X, Y and Z values of
retained points. This may invalidate other dimensions of the point if they depend on this
location or the location of other points in the input.

filters.crop (page 203) Filter points inside or outside a bounding box or a polygon

filters.decimation (page 205) Keep every Nth point.

filters.dem (page 153) Remove points that are in a raster cell but have a value far from the
value of the raster.

[ilters.farthestpointsampling (page 206) The Farthest Point Sampling Filter adds points from
the input to the output PointView one at a time by selecting the point from the input
cloud that is farthest from any point currently in the output.

filters.head (page 207) Return N points from beginning of the point cloud.

filters.iqr (page 208) Cull points falling outside the computed Interquartile Range for a given
dimension.

filters.locate (page 209) Return a single point with min/max value in the named dimension.

220 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.mad (page 210) Cull points falling outside the computed Median Absolute Deviation
for a given dimension.

filters.mongo (page 211) Cull points using MongoDB-style expression syntax.
filters.range (page 214) Pass only points given a dimension/range.

filters.sample (page 216) Perform Poisson sampling and return only a subset of the input
points.

filters.tail (page 217) Return N points from end of the point cloud.

[ilters.voxelcenternearestneighbor (page 218) Return the point within each voxel that is
nearest the voxel center.

filters.voxelcentroidnearestneighbor (page 219) Return the point within each voxel that is
nearest the voxel centroid.

Iters.voxeldownsize (page 219) Retain either first point detected in each voxel or center of a
pag P
populated voxel, depending on mode argument.

7.4.5 New

PDAL filters can be used to split the incoming point cloud into subsets. These filters will
invalidate an existing KD-tree.

filters.chipper

The Chipper Filter takes a single large point cloud and converts it into a set of smaller clouds,
or chips. The chips are all spatially contiguous and non-overlapping, so the result is a an
irregular tiling of the input data.

Note: Each chip will have approximately, but not exactly, the capacity (page 224) point count
specified.

See also:

The PDAL split command (page 35) utilizes the filters.chipper (page 221) to split data by
capacity.

Chipping is usually applied to data read from files (which produce one large stream of points)
before the points are written to a database (which prefer data segmented into smaller blocks).

Default Embedded Stage
This stage is enabled by default

7.4. Filters 221

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Erpel = YA b e

T

Fig. 7.6: Before chipping, the points are all in one collection.

222 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Fig. 7.7: After chipping, the points are tiled into smaller contiguous chips.

7.4. Filters 223

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example

"example.las",

{
"type":"filters.chipper",
"capacity":"400"

br

{
"type":"writers.pgpointcloud",
"connection":"dbname='lidar' user='user'"

Options

capacity How many points to fit into each chip. The number of points in each chip will not
exceed this value, and will sometimes be less than it. [Default: 5000]

filters.divider

The Divider Filter breaks a point view into a set of smaller point views based on simple
criteria. The number of subsets can be specified explicitly, or one can specify a maximum point
count for each subset. Additionally, points can be placed into each subset sequentially (as they
appear in the input) or in round-robin fashion.

Normally points are divided into subsets to facilitate output by writers that support creating
multiple output files with a template (LAS and BPF are notable examples).

Default Embedded Stage
This stage is enabled by default

Example

This pipeline will create 10 output files from the input file readers.las.

[

"example.las",

{
"type":"filters.divider",

224 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"count":"10"

}I

{
"type":"writers.las",
"filename":"out #.las"

Options

mode A mode of “partition” will write sequential points to an output view until the view
meets its predetermined size. “round_robin” mode will iterate through the output views
as it writes sequential points. [Default: “partition”]

count Number of output views. [Default: none]

capacity Maximum number of points in each output view. Views will contain approximately
equal numbers of points. [Default: none]

Warning: You must specify exactly one of either count (page 225) or capacity (page 225).

filters.groupby

The Groupby Filter takes a single PointView as its input and creates a PointView for
each category in the named dimension (page 226) as its output.

Default Embedded Stage
This stage is enabled by default

Example

The following pipeline will create a set of LAS files, where each file contains only points of a
single Classification.

[
"input.las",
{
"type":"filters.groupby",
"dimension":"Classification"

7.4. Filters 225

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

b o
"output_#.las"

Options

dimension The dimension containing data to be grouped.

filters.returns
The Returns Filter takes a single PointView as its input and creates a PointView for each of
the user-specified groups (page 227) defined below.

“first” is defined as those points whose ReturnNumber is 1 when the NumberOfReturns
is greater than 1.

“intermediate” is defined as those points whose Ret urnNumber is greater than 1 and less
than NumberOfReturns when NumberOfReturns is greater than 2.

“last” 1s defined as those points whose Ret urnNumber is equal to NumberOfReturns
when NumberOfReturns is greater than 1.

“only” is defined as those points whose NumberOfReturns is 1.

Default Embedded Stage
This stage is enabled by default

Example

This example creates two separate output files for the “last” and “only” returns.

[
"input.las",
{
"type":"filters.returns",
"groups":"last,only"
by
"output_#.las"

226 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

groups Comma-separated list of return number groupings. Valid options are “first”, “last”,
“intermediate” or “only”. [Default: “last”]

filters.separatescanline

The Separate scan line Filter takes a single PointView as its input and creates a
PointView for each scan line as its output. PointView must contain the
EdgeOfFlightLine dimension_.

Default Embedded Stage
This stage is enabled by default

Example

The following pipeline will create a set of text files, where each file contains only 10 scan lines.

[

"input.text",

{

"type":"filters.separatescanline",
"groupby":10

by

"output_#.text"

Options

groupby The number of lines to be grouped by. [Default : 1]

filters.splitter

The Splitter Filter breaks a point cloud into square tiles of a specified size. The origin of the
tiles is chosen arbitrarily unless specified with the origin_x (page 228) and origin_y (page 228)
option.

The splitter takes a single PointView as its input and creates a PointView for each tile as
its output.

7.4. Filters 227

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Splitting is usually applied to data read from files (which produce one large stream of points)
before the points are written to a database (which prefer data segmented into smaller blocks).

Default Embedded Stage
This stage is enabled by default

Example

"input.las",

{
"type":"filters.splitter",
"length":"100",
"origin_x":"638900.0",
"origin_y":"835500.0"

"type":"writers.pgpointcloud",
"connection":"dbname="'lidar' user='user

Options

length Length of the sides of the tiles that are created to hold points. [Default: 1000]
origin_x X Origin of the tiles. [Default: none (chosen arbitarily)]
origin_y Y Origin of the tiles. [Default: none (chosen arbitarily)]

buffer Amount of overlap to include in each tile. This buffer is added onto length in both the x
and the y direction. [Default: 0]

filters.chipper (page 221) Organize points into spatially contiguous, squarish, and
non-overlapping chips.

Jilters.divider (page 224) Divide points into approximately equal sized groups based on a
simple scheme.

filters.groupby (page 225) Split data categorically by dimension.
[ilters.returns (page 226) Split data by return order (e.g., ‘first’, ‘last’, ‘intermediate’, ‘only’).

[ilters.separatescanline (page 227) Split data based on scan lines.

228 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

[ilters.splitter (page 227) Split data based on a X/Y box length.

7.4.6 Join

Multiple point clouds can be joined to form a single point cloud. These filters will invalidate an
existing KD-tree.

filters.merge

The Merge Filter combines input from multiple sources into a single output. In most cases,
this happens automatically on output and use of the merge filter is unnecessary. However, there
may be special cases where merging points prior to a particular filter or writer is necessary or
desirable.

The merge filter will log a warning if its input point sets are based on different spatial
references. No checks are made to ensure that points from various sources being merged have
similar dimensions or are generally compatible.

Default Embedded Stage
This stage is enabled by default

Example 1

This pipeline will create an output file “output.las” that contcatenates the points from “filel”,
“file2” and “file3”. Note that the explicit use of the merge filter is unnecessary in this case
(removing the merge filter will yield the same result).

[
"filel",
"file2",
"file3",
{
"type": "filters.merge"
b

"output.las"

7.4. Filters 229

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example 2

Here are a pair of unlikely pipelines that show one way in which a merge filter might be used.
The first pipeline simply reads the input files “utm1.las”, “utm2.las” and “utm3.las”. Since the
points from each input set are carried separately through the pipeline, three files are created as

output, “outl.las”, “out2.las” and “out3.las”. “outl.las” contains the points in “utm1.las”.
“out2.las” contains the points in “utm?2.las” and “out3.las” contains the points in “utm3.las”.

[

"utml.las",
"utm2.las",
"utm3.las",
"out#.las"

Here is the same pipeline with a merge filter added. The merge filter will combine the points in
its input: “utml.las” and “utm?2.las”. Then the result of the merge filter is passed to the writer
along with “utm3.1as”. This results in two output files: “outl.las” contains the points from
“utml.las” and “utm?2.las”, while “out2.las” contains the points from “utm3.las”.

[
"utml.las",
"utm2.las",

{

"type" : "filters.merge"
by

"utm3.las",
"out#.las"

filters.merge (page 229) Merge data from two different readers into a single stream.

7.4.7 Metadata

PDAL filters can be used to create new metadata. These filters will not invalidate an existing
KD-tree.

Note: filters.cpd (page 191) and filters.icp (page 193) can optionally create metadata as well,
inserting the computed transformation matrix.

230 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.hexbin

A common questions for users of point clouds is what the spatial extent of a point cloud
collection is. Files generally provide only rectangular bounds, but often the points inside the
files only fill up a small percentage of the area within the bounds.

Fig. 7.8: Hexbin output shows boundary of actual points in point buffer, not just rectangular
extents.

The hexbin filter reads a point stream and writes out a metadata record that contains a
boundary, expressed as a well-known text polygon. The filter counts the points in each
hexagonal area to determine if that area should be included as part of the boundary. In order to
write out the metadata record, the pdal pipeline command must be invoked using the
“—pipeline-serialization” option:

Streamable Stage

This stage supports streaming operations

Example 1

The following pipeline file and command produces an JSON output file containing the
pipeline’s metadata, which includes the result of running the hexbin filter:

[
"/Users/me/pdal/test/data/las/autzen_trim.las",

{

7.4. Filters 231

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type" : "filters.hexbin"

$ pdal pipeline hexbin-pipeline.json —--metadata hexbin-out. json

"stages":

{
"filters.hexbin":
{

"area": 746772.7543,

"avg_pt_per_sq unit": 22.43269935,

"avg_pt_spacing”": 2.605540869,

"boundary": "MULTIPOLYGON (((636274.38924399 848834.99817891,
—637242.52219686 848834.99817891, 637274.79329529 849226.26445367, _,
—~637145.70890157 849338.05481789, 637242.52219686 849505.74036422,
—636016.22045656 849505.74036422, 635983.94935813 849114.47408945,
—636113.03375184 848890.89336102, 636274.38924399 848834.99817891)))

"boundary_json": { "type": "MultiPolygon", "coordinates": [[_
—[[636274.38924399, 848834.99817891], [637242.52219686, 848834.
99817891 1, [637274.79329529, 849226.26445367 1, [637145.
—70890157, 849338.05481789], [637242.52219686, 849505.74036422 1,
—~[636016.22045656, 849505.74036422 1, [635983.94935813, 849114.
47408945], [636113.03375184, 848890.89336102], [636274.
38924399, 848834.99817891 1 1 1 1 1},

"density": 0.1473004999,

"edge_length": O,

"estimated_edge": 111.7903642,

"hex_offsets": "MULTIPOINT (O O, -32.2711 55.8952, 0 111.79,
—~64.5422 111.79, 96.8133 55.8952, 64.5422 0)",
"sample_size": 5000,

"threshold": 15

s

Example 2

As a convenience, the pdal info command will produce similar output:

$ pdal info —-boundary /Users/me/test/data/las/autzen_trim.las

232 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"boundary":
{

"area": 746772.7543,

"avg_pt_per_sq unit": 22.43269935,

"avg_pt_spacing": 2.605540869,

"boundary": "MULTIPOLYGON (((636274.38924399 848834.99817891,
—~637242.52219686 848834.99817891, 637274.79329529 849226.26445367,
—~637145.70890157 849338.05481789, 6©637242.52219686 849505.74036422,
—~636016.22045656 849505.74036422, 635983.94935813 849114.47408945,
—636113.03375184 848890.89336102, 636274.38924399 848834.99817891)))

— 7

"boundary_json": { "type": "MultiPolygon", "coordinates": [[[
~[636274.38924399, 848834.99817891], [637242.52219686, 848834.
99817891 1, [637274.79329529, 849226.26445367 1, [637145.
70890157, 849338.05481789], [637242.52219686, 849505.74036422 1,
—[636016.22045656, 849505.74036422], [635983.94935813, 849114.
47408945], [636113.03375184, 848890.89336102], [636274.
38924399, 848834.99817891 1 1 1 1 1},

"density": 0.1473004999,

"edge_length": O,

"estimated edge": 111.7903642,

"hex_offsets": "MULTIPOINT (0O 0, -32.2711 55.8952, 0 111.79, 64.
5422 111.79, 96.8133 55.8952, 64.5422 0)",

"sample_size": 5000,

"threshold": 15

b

"filename": "\ /Users\/acbell\/pdal\/test\/data\/las\/autzen_trim.
—~las",

"pdal_version": "1.6.0 (git-version: 675afe)"
}
Options

edge_size If not set, the hexbin filter will estimate a hex size based on a sample of the data. If
set, hexbin will use the provided size in constructing the hexbins to test.

sample_size How many points to sample when automatically calculating the edge size? Only
applies if edge_size (page 233) is not explicitly set. [Default: 5000]

threshold Number of points that have to fall within a hexagon boundary before it is
considered “in” the data set. [Default: 15]

precision Minimum number of significant digits to use in writing out the well-known text of
the boundary polygon. [Default: 8]

7.4. Filters 233

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

preserve_topology Use GEOS SimplifyPreserveTopology instead of Simplify for polygon
simplification with smooth option. [Default: true]

smooth Use GEOS simplify operations to smooth boundary to a tolerance [Default: true]

filters.stats

The Stats Filter calculates the minimum, maximum and average (mean) values of dimensions.
On request it will also provide an enumeration of values of a dimension and skewness and
kurtosis.

The output of the stats filter is metadata that can be stored by writers or used through the PDAL
API. Output from the stats filter can also be quickly obtained in JSON format by using the
command “pdal info —stats”.

The filter can compute both sample and population statistics. For kurtosis, the filter can also
compute standard and excess kurtosis. However, only a single value is reported for each
statistic type in metadata, and that is the sample statistic, rather than the population statistic.
For kurtosis the sample excess kurtosis is reported. This seems to match the behavior of many
other software packages.

Example

"input.las",

{
"type":"filters.stats",

"dimensions":"X,Y,7Z,Classification",
"enumerate":"Classification"

"type":"writers.las",
"filename":"output.las"

Options

dimensions A comma-separated list of dimensions whose statistics should be processed. If
not provided, statistics for all dimensions are calculated.

enumerate A comma-separated list of dimensions whose values should be enumerated. Note
that this list does not add to the list of dimensions that may be provided in the
dimensions (page 234) option.

234 Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

count Identical to the enumerate (page 234) option, but provides a count of the number of
points in each enumerated category.

global A comma-separated list of dimensions for which global statistics (median, mad, mode)
should be calculated.

advanced Calculate advanced statistics (skewness, kurtosis). [Default: false]

filters.hexbin (page 231) Tessellate XY domain and determine point density and/or point
boundary.

filters.info (page 167) Generate metadata about the point set, including a point count and
spatial reference information.

filters.stats (page 234) Compute statistics about each dimension (mean, min, max, etc.).

7.4.8 Mesh

Meshes can be computed from point clouds. These filters will invalidate an existing KD-tree.

filters.delaunay

The Delaunay Filter creates a triangulated mesh fulfilling the Delaunay condition from a
collection of points.

The filter is implemented using the delaunator-cpp (https://github.com/delfrrr/delaunator-cpp)
library, a C++ port of the JavaScript Delaunator (https://github.com/mapbox/delaunator)
library.

The filter currently only supports 2D Delaunay triangulation, using the X and Y dimensions of
the point cloud.

Default Embedded Stage
This stage is enabled by default

Example

"input.las",
{
"type": "filters.delaunay"
}I
{

7.4. Filters 235

https://github.com/delfrrr/delaunator-cpp
https://github.com/mapbox/delaunator

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type": "writers.ply",
"filename": "output.ply",
"faces": true

Options

None.

filters.greedyprojection

The Greedy Projection Filter creates a mesh (triangulation) in an attempt to reconstruct the
surface of an area from a collection of points.

GreedyProjectionTriangulation is an implementation of a greedy triangulation algorithm for
3D points based on local 2D projections. It assumes locally smooth surfaces and relatively
smooth transitions between areas with different point densities. The algorithm itself is identical
to that used in the PCL
(http://www.pointclouds.org/documentation/tutorials/greedy_projection.php) library.

Default Embedded Stage
This stage is enabled by default

Example

"input.las",

{
"type": "filters.greedyprojection",
"multiplier": 2,
"radius": 10

"type":"writers.ply",
"faces":true,
"filename":"output.ply"

236 Chapter 7. Drivers

http://www.pointclouds.org/documentation/tutorials/greedy_projection.php

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Options

multiplier Nearest neighbor distance multiplier. [Required]

radius Search radius for neighbors. [Required]

num_neighbors Number of nearest neighbors to consider. [Required]
min_angle Minimum angle for created triangles. [Default: 10 degrees]
max_angle Maximum angle for created triangles. [Default: 120 degrees]

eps_angle Maximum normal difference angle for triangulation consideration. [Default: 45
degrees]

filters.poisson

The Poisson Filter passes data Mischa Kazhdan’s poisson surface reconstruction algorithm.
[Kazhdan2006] (page 540) It creates a watertight surface from the original point set by
creating an entirely new point set representing the imputed isosurface. The algorithm requires
normal vectors to each point in order to run. If the x, y and z normal dimensions are present in
the input point set, they will be used by the algorithm. If they don’t exist, the poisson filter will
invoke the PDAL normal filter to create them before running.

The poisson algorithm will usually create a larger output point set than the input point set.
Because the algorithm constructs new points, data associated with the original points set will
be lost, as the algorithm has limited ability to impute associated data. However, if color
dimensions (red, green and blue) are present in the input, colors will be reconstruced in the
output point set.

This integration of the algorithm with PDAL only supports a limited set of the options
available to the implementation. If you need support for further options, please let us know.

Default Embedded Stage
This stage is enabled by default

Example

"dense.las",
{
"type":"filters.poisson"
y
{

7.4. Filters 237

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"writers.ply",
"filename":"isosurface.ply"

Note: The algorithm is slow. On a reasonable desktop machine, the surface reconstruction
shown below took about 15 minutes.

Options

density Write an estimate of neighborhood density for each point in the output set.

depth Maximum depth of the tree used for reconstruction. The output is sentsitve to this
parameter. Increase if the results appear unsatisfactory. [Default: 8]

filters.delaunay (page 235) Create mesh using Delaunay triangulation.

filters.greedyprojection (page 236) Create mesh using the Greedy Projection Triangulation
approach.

filters.gridprojection Create mesh using the Grid Projection approach [Li2010] (page 540).

filters.movingleastsquares Data smoothing and normal estimation using the approach of
[Alexa2003] (page 539).

filters.poisson (page 237) Create mesh using the Poisson surface reconstruction algorithm
[Kazhdan2006] (page 540).

7.4.9 Languages

PDAL has two filters than can be used to pass point clouds to other languages. These filters
will invalidate an existing KD-tree.

filters.matlab

The Matlab Filter allows Matlab (https://www.mathworks.com/products/matlab.html)
software to be embedded in a Pipeline (page 45) that interacts with a struct array of the data
and allows you to modify those points. Additionally, some global Metadata (page 414) is also
available that Matlab functions can interact with.

The Matlab interpreter must exit and always set “ans==true” upon success. If “ans==false”, an
error would be thrown and the Pipeline (page 45) exited.

See also:

238 Chapter 7. Drivers

https://www.mathworks.com/products/matlab.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Fig. 7.9: Point cloud (800,000 points)

7.4. Filters

Point cloud Data Abstraction Library, Release 2.1.0

Fig. 7.10: Reconstruction (1.8 million vertices, 3.7 million faces)

Chapter 7. Drivers

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

writers.matlab (page 121) can be used to write .mat files.

Note: filters.matlab (page 238) embeds the entire Matlab interpreter, and it will require a fully
licensed version of Matlab to execute your script.

Dynamic Plugin

This stage requires a dynamic plugin to operate

Example
[
{
"filename": "test\/datal\/las\/1.2-with-color.las",
"type": "readers.las"
}o
{
"type": "filters.matlab",
"script": "matlab.m"
bo
{
"filename": "out.las",
"type": "writers.las"
}
]
Options

script When reading a function from a separate Matlab
(https://www.mathworks.com/products/matlab.html) file, the file name to read from.
[Example: “functions.m”]

source The literal Matlab (https://www.mathworks.com/products/matlab.html) code to
execute, when the script option is not being used.

add_dimension The name of a dimension to add to the pipeline that does not already exist.

struct Array structure name to read [Default: “PDAL”]

7.4. Filters 241

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.python

The Python Filter allows Python (http://python.org/) software to be embedded in a Pipeline
(page 45) that allows modification of PDAL points through a NumPy (http://www.numpy.org/)
array. Additionally, some global Metadata (page 414) is also available that Python functions
can interact with.

The function must have two NumPy (http://www.numpy.org/) arrays as arguments, ins and
outs. The ins array represents the points before the filters.python filter and the
out s array represents the points after filtering.

Warning: Make sure NumPy (http://www.numpy.org/) is installed in your Python
(http://python.org/) environment.

$ python3 -c "import numpy; print (numpy.__version_)"
1.18.1

Warning: Each array contains all the Dimensions (page 251) of the incoming ins point
schema. Each array in the out s list matches the NumPy (http://www.numpy.org/) array of
the same type as provided as ins for shape and type.

Dynamic Plugin

This stage requires a dynamic plugin to operate

import numpy as np

def multiply_z(ins,outs) :

Z = ins['Z']
Z =7 = 10.0
outs['Z2'] = Z

return True

1. The function must always return 7rue upon success. If the function returned False, an
error would be thrown and the Pipeline (page 45) exited.

2. If you want write a dimension that might not be available, you can specify it with the
add_dimension (page 247) option:

"add_dimension": "NewDimensionOne"

To create more than one dimension, this option also accepts an array:

242 Chapter 7. Drivers

http://python.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://python.org/
http://www.numpy.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"add_dimension": ["NewDimensionOne", "NewDimensionTwo",
—"NewDimensionThree"]

You can also specify the rype (page 255) of the dimension using an =.

"add_dimension": "NewDimensionOne=uint8"

Modification Example

"file-input.las",

{
"type":"filters.smrf"

}I

{
"type":"filters.python",
"script":"multiply_z.py",
"function":"multiply_ z",
"module":"anything"

"type":"writers.las",
"filename":"file-filtered.las"

The JSON pipeline file referenced the external multiply_z.py Python (http://python.org/) script,
which scales the Z coordinate by a factor of 10.

import numpy as np

def multiply z(ins,outs):

Z = ins['Z']
7 =7 % 10.0
outs['Z'] = 7

return True

Predicates

Points can be retained/removed from the stream by setting true/false values into a special
“Mask” dimension in the output point array.

The example above sets the “mask’ to true for points that are in classifications 1 or 2 and to
false otherwise, causing points that are not classified 1 or 2 to be dropped from the point

7.4. Filters 243

http://python.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

stream.

import numpy as np

def filter (ins, outs) :
cls = ins['Classification']

keep_classes = [1, 2]

Use the first test for our base array.
keep = np.equal(cls, keep_classes[0])

For 1:n, test each predicate and join back
to our existing predicate array
for k in range(l, len(keep_classes)):

t = np.equal (cls, keep_classes[k])

keep = keep + t

outs['Mask'] = keep
return True

Note: filters.range (page 214) is a specialized filter that implements the exact functionality
described in this Python operation. It is likely to be much faster than Python, but not as
flexible. filters.python (page 242) is the tool you can use for prototyping point stream
processing operations.

See also:

If you want to read a Pipeline (page 45) of operations into a numpy array, the PDAL Python
extension (https://pypi.python.org/pypi/PDAL) is available.

Example pipeline

"file-input.las",

{
"type":"filters.smrf"

}I

{
"type":"filters.python",
"script":"filter_pdal.py",
"function":"filter",
"module": "anything"

by

244 Chapter 7. Drivers

https://pypi.python.org/pypi/PDAL
https://pypi.python.org/pypi/PDAL

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"writers.las",
"filename":"file-filtered.las"

Module Globals

Three global variables are added to the Python module as it is run to allow you to get
Dimensions (page 251), Metadata (page 414), and coordinate system information.
Additionally, the met adata object can be set by the function to modify metadata for the
in-scope filters.python (page 242) pdal : : St age (page 500).

def myfunc(ins, outs) :

print ('schema: ', schema)

print ('srs: ', spatialreference)
print ('metadata: ', metadata)
outs = ins

return True

Updating metadata

The filter can update the global met adata dictionary as needed, define it as a global Python
variable for the function’s scope, and the updates will be reflected back into the pipeline from
that stage forward.

def myfunc (ins,outs) :
global metadata

metadata = {'name': 'root', 'value': 'a string', 'type': 'string',
—'description': 'a description', 'children': [{'name': 'filters.
—python', 'value': 52, 'type': 'integer', 'description': 'a filter,
—~description', 'children': []}, {'name': 'readers.faux', 'wvalue':
—'another string', 'type': 'string', 'description': 'a reader_
—~description', 'children': []}1}

return True

Passing Python objects

An JSON-formatted option can be passed to the filter representing a Python dictionary
containing objects you want to use in your function. This feature is useful in situations where
you wish to call pipeline (page 32) with substitutions.

7.4. Filters 245

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

If we needed to be able to provide the Z scaling factor of Example Pipeline (page 244) with a
Python argument, we can place that in a dictionary and pass that to the filter as a separate
argument. This feature allows us to be able easily reuse the same basic Python function while
substituting values as necessary.

[
"input.las",
{
"type":"filters.python",
"module":"anything",
"function":"filter",
"script":"arguments.py",
"pdalargs":"{\"factor\":0.3048,\"an_argument\":42, \"another\
<": \"a string\"}"
}y

"output.las"

With that option set, you can now fetch the pdalargs (page 247) dictionary in your Python
script and use it:

import numpy as np

def multiply_ =z (ins,outs) :

Z = ins['Z']
Z = Z » float (pdalargs|['factor'])
outs['Z2'] = Z

return True

Standard output and error

A redirector module is available for scripts to output to PDAL’s log stream explicitly. The
module handles redirecting sys.stderr and sys.stdout for you transparently, but it can
be used directly by scripts. See the PDAL source code for more details.

Options

script When reading a function from a separate Python (http://python.org/) file, the file name
to read from.

source The literal Python (http://python.org/) code to execute, when the script option is not
being used.

module The Python module that is holding the function to run. [Required]

246 Chapter 7. Drivers

http://python.org/
http://python.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

function The function to call. [Required]

add_dimension A dimension name or an array of dimension names to add to the pipeline that
do not already exist.

pdalargs A JSON dictionary of items you wish to pass into the modules globals as the
pdalargs object.

filters.julia

The Julia Filter allows Julia (https://julialang.org/) software to be embedded in a Pipeline
(page 45) that allows modification of PDAL points through a TypedTables
(https://github.com/JuliaData/TypedTables.jl) datatype.

The supplied julia function must take a TypedTables
(https://github.com/JuliaData/TypedTables.jl) FlexTable as an argument and return the same
object (with modifications).

Warning: The returned Table contains all the Dimensions (page 251) of the incoming
ins Table

Dynamic Plugin

This stage requires a dynamic plugin to operate

module MyModule
using TypedTables

function multiply_ z (ins)

for n in 1:length (ins)

ins[n] = merge(ins[n
end

1, (; :2 => row.Z » 10.0)

return ins
end
end

If you want write a dimension that might not be available, you can_
—specify
it with the add_dimension_ option:

"add_dimension": "NewDimensionOne"

7.4. Filters 247

https://julialang.org/
https://github.com/JuliaData/TypedTables.jl
https://github.com/JuliaData/TypedTables.jl

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

To create more than one dimension, this option also accepts an array:

"add_dimension": ["NewDimensionOne", "NewDimensionTwo",
—"NewDimensionThree"]

You can also specify the :ref: type <types>" of the dimension using
—~an =

"add _dimension": "NewDimensionOne=uint8"

Filter Example

"file-input.las",

{
"type":"filters.smrf"

by

{
"type":"filters.julia",
"script":"filter_z.jl",
"function":"filter z",
"module" : "MyModule"

"type":"writers.las",
"filename":"file-filtered.las"

The JSON pipeline file referenced the external filter_z.jl Julia (https://julialang.org/) script,
which removes points with the Z coordinate by less than 420.

module MyModule
using TypedTables

function filter_z (ins)
return filter(p —> p.Z > 420, ins)
end
end

248 Chapter 7. Drivers

https://julialang.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Modification Example

"file-input.las",

{
"type":"filters.smrf"

}I

{
"type":"filters.julia",
"script":"multiply_z.jl",
"function":"multiply_z",
"module" : "MyModule"

"type":"writers.las",
"filename":"file-modified.las"

The JSON pipeline file referenced the external multiply_z.jl Julia (https://julialang.org/) script,
which scales the 7 coordinate by a factor of 10.

module MyModule
using TypedTables

function multiply_ =z (ins)
for n in 1:1length (ins)
ins[n] = merge(ins[n

end

1, (; :Z => row.Z » 10.0)

return ins
end
end

Options

script When reading a function from a separate Julia (https://julialang.org/) file, the file name
to read from.

source The literal Julia (https://julialang.org/) code to execute, when the script option is not
being used.

module The Julia module that is holding the function to run. [Required]
function The function to call. [Required]

add_dimension A dimension name or an array of dimension names to add to the pipeline that
do not already exist.

7.4. Filters 249

https://julialang.org/
https://julialang.org/
https://julialang.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.matlab (page 238) Embed MATLAB software in a pipeline.
filters.python (page 242) Embed Python software in a pipeline.
filters.julia (page 247) Embed Julia software in a pipeline.

7.4.10 Other

filters.streamcallback

The Stream Callback Filter provides a simple hook for a user-specified action to occur for
each point. The stream callback filter is for use by C++ programmers extending PDAL
functionality and isn’t useful to end users.

Default Embedded Stage
This stage is enabled by default

Streamable Stage

This stage supports streaming operations

Options

None.
filters.streamcallback (page 250) Provide a hook for a simple point-by-point callback.

filters.voxelgrid Create a new point cloud composed of voxel centroids computed from the
input point cloud. All incoming dimension data (e.g., intensity, RGB) will be lost.

250 Chapter 7. Drivers

CHAPTER
EIGHT

DIMENSIONS

8.1 Dimensions

All point data in PDAL is stored as a set of dimensions. Dimensions have a name and a data
type. The data type is determined at runtime, but a default data type for each dimension is
listed below, along with the name of the dimension and its description.

The following table provides a list of known dimension names you can use in Filters
(page 140), Writers (page 107), and Readers (page 53).

Note: Types are default types. Stage developers should set the dimension type explicitly if the
default dimension isn’t suitable.

Name Type | Description

Alpha uint16 | Alpha

Amplitude float | This is the ratio of the received power to the power received at the
detection limit expressed in dB

Azimuth double| Scanner azimuth

BackgroundRadidtomt | A measure of background radiation.

Blue uint16 | Blue image channel value

ClassFlags uint8 | Class Flags
Classification | uint8 | ASPRS classification. 0 for no classification. See LAS specifica-
tion for details.

ClusterID uint64 _|tID assigned to a point by a point-clustering algorithm.

Curvature double| Curvature of surface at this point

Density double| Estimate of point density

Deviation float | Difference between the shape of the reference pulse and the retun

pulse. A larger value for deviation indicates larger distortion.
EchoRange double| Echo Range

Continued on next page

251

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Table 8.1 — continued from previous page
Name Type | Description
EdgeOfFlightLinaint8 | Indicates the end of scanline before a direction change with a value
of 1 - 0 otherwise
ElevationCentrgidiouble | Elevation Centroid
ElevationHigh | double| Elevation High
ElevationLow | double| Elevation Low

Flag uint8 | Flag

GpsTime double| GPS time that the point was acquired

Green uint16 | Green image channel value
HeightAboveGrododble | Height Above Ground

Infrared uint16 | Infrared

Intensity uint16 | Representation of the pulse return magnitude

InternalTime | double| Scanner’s internal time when the point was acquired, in seconds
IsPpsLocked | uint8 | The external PPS signal was found to be synchronized at the time
of the current laser shot.

LatitudeCentroiddouble| Latitude Centroid

LatitudeHigh | double| Latitude High

LatitudeLow | double| Latitude Low

LongitudeCentroibuble | Longitude Centroid

LongitudeHigh | double| Longitude High

LongitudeLow | double| Longitude Low

LvisLfid uint64 | LVIS_LFID

Mark uint8 | Mark

NNDistance double| Distance metric related to a point’s nearest neighbors.

NormalX double| X component of a vector normal to surface at this point

NormalY double| Y component of a vector normal to surface at this point

NormalZ double| Z component of a vector normal to surface at this point

NumberOfReturnsint8 | Total number of returns for a given pulse.

OffsetTime uint32 | Milliseconds from first acquired point

Omit uint8_t| Used to shallowly mark a point as being omitted without removing
it

Originld uint32 | A file source ID from which the point originated. This ID is global

to a derivative dataset which may be aggregated from multiple files.
PassiveSignal | int32 | Relative passive signal

PassiveX double| Passive X footprint

PassiveY double| Passive Y footprint

PassiveZ double| Passive Z footprint

Pdop float | GPS PDOP (dilution of precision)

Pitch float | Pitch in degrees

Pointld uint32 | An explicit representation of point ordering within a file, which

allows this usually-implicit information to be preserved when re-
ordering points.

Continued on next page

252 Chapter 8. Dimensions

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Table 8.1 — continued from previous page

Name Type | Description

PointSourceld | uint16 | File source ID from which the point originated. Zero indicates that
the point originated in the current file

PulseWidth float | Laser received pulse width (digitizer samples)

Red uint16 | Red image channel value

Reflectance float | Ratio of the received power to the power that would be received
from a white diffuse target at the same distance expressed in dB.
The reflectance represents a range independent property of the tar-
get. The surface normal of this target is assumed to be in parallel
to the laser beam direction.

ReflectedPulse | int32 | Relative reflected pulse signal strength

ReturnNumber | uint8 | Pulse return number for a given output pulse. A given output laser
pulse can have many returns, and they must be marked in order,
starting with 1

Roll float | Roll in degrees

ScanAngleRank float | Angle degree at which the laser point was output from the system,
including the roll of the aircraft. The scan angle is based on being
nadir, and -90 the left side of the aircraft in the direction of flight

ScanChannel | uint8 | Scan Channel

ScanDirectionF|agint8

Direction at which the scanner mirror was traveling at the time of
the output pulse. A value of 1 is a positive scan direction, and a bit
value of 0 is a negative scan direction, where positive scan direction
is a scan moving from the left side of the in-track direction to the
right side and negative the opposite

ShotNumber | uint64 | Shot Number
StartPulse int32 | Relative pulse signal strength
UserData uint8 | Unspecified user data
WanderAngle | double| Wander Angle

X double| X coordinate
XBodyAccel | double| X Body Acceleration
XBodyAngRate double| X Body Angle Rate
XVelocity double| X Velocity

Y double| Y coordinate
YBodyAccel | double| Y Body Acceleration
YBodyAngRate double| Y Body Angle Rate
Y Velocity double| Y Velocity

Z double| Z coordinate
ZBodyAccel double| Z Body Acceleration
ZBodyAngRate| double| Z Body Angle Rate
ZVelocity double| Z Velocity

8.1. Dimensions

253

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

254 Chapter 8. Dimensions

CHAPTER
NINE

9.1 Types

TYPES

PDAL supports the standard integral and floating point types for dimensions (page 251). This
table lists the types and associated strings that can be used to describe the types in options.

Type Size | Text Representations

in

Bits
Signed Integer | 8 int8, int8_t, char
Signed Integer | 16 intl6,intl1l6_t, short
Signed Integer | 32 int32,int32_t, int
Signed Integer | 64 int64, int64_t, long
Unsigned In- | 8 uint8,uint8_t, uchar
teger
Unsigned In- | 16 uintl6,uintl6_t, ushort
teger
Unsigned In- | 32 uint32,uint32_t,uint
teger
Unsigned In- | 64 uint64,uint64_t,ulong
teger
Floating Point | 32 float, float32
Floating Point | 64 double, float64

255

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

256 Chapter 9. Types

CHAPTER
TEN

PYTHON

10.1 Python

PDAL provides Python support in two significant ways. First it embeds
(https://docs.python.org/3/extending/embedding.html) Python to allow you to write Python
programs that interact with data using filters.python (page 242) filter. Second, it extends
(https://docs.python.org/3/extending/extending.html) Python by providing an extension that
Python programmers can use to leverage PDAL capabilities in their own applications.

Note: PDAL’s Python story always revolves around Numpy (http://www.numpy.org/) support.
PDAL’s data is provided to both the filters ands the extension as Numpy arrays.

10.1.1 Versions

PDAL supports both Python 3.5+. Continuous Integration (page 464) tests Python Linux,
OSX, and Windows.

10.1.2 Embed

PDAL allows users to embed Python functions inline with other Pipeline (page 45) processing
operations. The purpose of this capability is to allow users to write small programs that
implement interesting actions without requiring a full C++ development activity of building a
PDAL stage to implement it. A Python filter is an opportunity to interactively and iteratively
prototype a data operation without strong considerations of performance or generality. If
something works well enough, maybe one takes on the effort to formalize it, but that isn’t
necessary. PDAL’s embed of Python allows you to be as grimy as you need to get the job done.

257

https://docs.python.org/3/extending/embedding.html
https://docs.python.org/3/extending/extending.html
http://www.numpy.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

| readers.las }—»

(

def multiply_z(ins,outs):
Z = ins['Z"]
Z =17 % 10.0
outs['Z2'] = Z

—>‘ writers.bpf \

—

Fig. 10.1: Embedding a Python function to take Z values read from a readers.las (page 69) and
then output them to a writers.bpf (page 107).

10.

1.3 Extend

PDAL provides a Python extension (https://pypi.python.org/pypi/PDAL) that gives users
access to executing pipeline (page 45) instantiations and capturing the results as Numpy
(http://www.numpy.org/) arrays. This mode of operation is useful if you are looking to have
PDAL simply act as your data format and processing handler.

Python extension users are expected to construct their own PDAL pipeline (page 45) using
Python’s json library, or whatever other libraries they wish to manipulate JSON. They then
feed it into the extension and get back the results as Numpy (http://www.numpy.org/) arrays:

Jjso

[

]

mwmnn

imp
pip
cou
arr
met
log

n= """

"l1.2-with-color.las",

{
"type" .
"dimension":

ort pdal
eline
nt
ays
adata

= pipeline.log

Installation

"filters.sort",

"X"

pdal.Pipeline (json)
pipeline.execute ()
pipeline.arrays
pipeline.metadata

The PDAL Python extension requires a working PDAL installation (page 13). Unless you
choose the Conda installation method, make sure that you a current, working version of PDAL

258

Chapter 10. Python

https://pypi.python.org/pypi/PDAL
http://www.numpy.org/
http://www.numpy.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

before installing the extension.

Note: Previous to PDAL 2.1, Python support was spread across the embedded stages
(readers.numpy (page 77) and filters.python (page 242)) which were installed by PDAL itself
and the PDAL extension that was installed from PyPI. As of PDAL 2.1 and PDAL/python 2.3,
both the embedded stages and the extension are installed from PyPI.

Installation Using pip

As administrator, you can install PDAL using pip:

pip install PDAL

Note: To install pip please read here (https://pip.pypa.io/en/stable/installing/)

Installation from Source

PDAL Python support is hosted in a separate repository than PDAL itself at GitHub
(https://github.com/PDAL/python). If you have a working PDAL installation and a working
Python installation, you can install the extension using the following procedure on Unix. The
procedure on Windows is similar

$ git clone https://github.com/PDAL/python pdalextension
$ cd pdalextension
$ pip install .

Install using Conda

The PDAL Python support can also be installed using the Conda (https://conda.io/docs/)
package manager. An advantage of using Conda to install the extension is that Conda will
install PDAL. We recommend installing PDAL and the PDAL Python extension in an
environment other than the base environment. To install in an existing environment, use the
following

conda install -n <environment name> -c conda-forge python-pdal

Use the following command to install PDAL and the PDAL Python extension into a new
environment and activate that environment

10.1. Python 259

https://pip.pypa.io/en/stable/installing/
https://github.com/PDAL/python
https://conda.io/docs/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

conda create -n <environment name> -c¢ conda-forge python-pdal
conda activate <environment name>

Note: The official pdal and python-pdal packages reside in the conda-forge channel,
which can be added via conda config or manually specified with the —c option, as shown
in the examples above.

260 Chapter 10. Python

CHAPTER
ELEVEN

JAVA

11.1 Java

PDAL provides Java bindings to use PDAL on JVM (https://github.com/PDAL/java). It is
released independently from PDAL itself as of PDAL 1.7. Native binaries are prebuilt for
Linux and MacOS and delivered in a jar, so there is no need in building PDAL with a special
flag or building JNI binaries manually.

The project consists of the following modules:

* pdal-native - with packed OS specific libraries to link PDAL to JNI proxy classes.
Dependency contains bindings for x86_64-darwin and x86_64-1inux, other
versions are not supported yet.

* pdal - with the core bindings functionality.

* pdal-scala - a Scala API package that simplifies PDAL Pipeline construction.

11.1.1 Versions

PDAL JNI major version usually follows PDAL versioning i.e. pdal-java 1.8.x was
built and tested against PDAL 1.8.x and pdal-java 2.1.x against PDAL 2.x.X.

11.1.2 Using PDAL Java bindings

PDAL provides JNI bindings
(https://docs.oracle.com/javase/8/docs/technotes/guides/jni/index.html) that gives users access
to executing pipeline (page 45) instantiations and capturing the results in Java interfaces.
This mode of operation is useful if you are looking to have PDAL simply act as your data
format and processing handler.

Users are expected to construct their own PDAL pipeline (page 45), execute it, and retrieve
points into Java memory:

261

https://github.com/PDAL/java
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/index.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

import io.pdal._

val json =
mman
| {
| "pipeline": [
| {
| "filename":"1.2-with-color.las",
| "spatialreference":"EPSG:2993"
| }r
| {
| "type": "filters.reprojection",
| "out_srs": "EPSG:3857"
| o
| {
| "type": "filters.delaunay"
| }
|]
| }
""" o stripMargin
val pipeline = Pipeline (json)

pipeline.validate () // check if our JSON and options were good
pipeline.setLoglLevel (8) // make it really noisy

pipeline.execute () // execute the pipeline

val metadata: String = pipeline.getMetadata () // retrieve_
—metadata

val pvs: PointViewIterator = pipeline.getPointViews () // iterator,
—~over PointViews

val pv: PointView = pvs.next () // let's take the first,,
—PointView

// load all points into JVM memory

// PointCloud provides operations on PDAL points that

// are loaded in this case into JVM memory as a single Array[Byte]
val pointCloud: PointCloud = pv.getPointCloud ()

val x: Double = pointCloud.getDouble (0, DimType.X) // get a point,,
—with PointId = 0 and only a single dimensions

// 1in some cases it 1s not neccesary to load everything into JVM_,
—memory

// so it 1is possible to get only required points directly from the_,
—PointView

val y: Double = pv.getDouble (0, DimType.Y)

// it is also possible to get access to the triangular mesh,,
—generated via PDAL

262 Chapter 11. Java

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

val mesh: TriangularMesh = pv.getTriangularMesh ()

// the output is an Array of Triangles

// Each Triangle contains PointIds from the PDAL point table
val triangles: Array[Triangle]| = mesh.asArray

pv.close ()
pipeline.close ()

11.1.3 Using PDAL Scala

PDAL Scala project introduces a DSL to simplify PDAL Pipeline construction (this is the same
pipeline from the section above):

import io.pdal.
import io.pdal.pipeline._

val expression =
ReadlLas ("1.2-with-color.las", spatialreference = Some ("EPSG:2993

Sm)) o~

FilterReprojection ("EPSG:3857") ~
FilterDelaunay ()
val pipeline = expression.toPipeline

pipeline.validate() // check if our JSON and options were good
pipeline.setLoglevel (8) // make it really noisy

pipeline.execute() // execute the pipeline
val metadata: String = pipeline.getMetadata () // retrieve_
—metadata

val pvs: PointViewIterator pipeline.getPointViews () // iterator,
—over PointViews
val pv: PointView = pvs.next () // let's take the first,,

—~PointView

// load all points into JVM memory

// PointCloud provides operations on PDAL points that

// are loaded in this case into JVM memory as a single Array[Byte]
val pointCloud: PointCloud = pv.getPointCloud ()

val x: Double = pointCloud.getDouble (0, DimType.X) // get a point,
owith PointId = 0 and only a single dimensions

// 1in some cases it 1s not neccesary to load everything into JVM,_,
—memory

// so it 1is possible to get only required points directly from the_,
—PointView

val y: Double = pv.getDouble (0, DimType.Y)

11.1. Java 263

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

// it is also possible to get access to the triangular mesh,,
—generated via PDAL

val mesh: TriangularMesh = pv.getTriangularMesh ()

// the output is an Array of Triangles

// Each Triangle contains PointIds from the PDAL point table
val triangles: Array|[Triangle] = mesh.asArray

pv.close ()
pipeline.close ()

It covers PDAL 2.0.x, but to use any custom DSL that is not covered by the current Scala API
you can use RawExpr type to buildaPipeline Expression:

import io.pdal._
import io.pdal.pipeline._
import io.circe.syntax._

val pipelineWithRawExpr =
Readlas ("1.2-with-color.las") ~
RawExpr (Map ("type" -> "filters.crop") .asdson) ~
Writelas ("1l.2-with—-color-out.las")

Installation

PDAL Java artifacts are cross published for Scala 2.13,2.12 and 2.11. However, if it is
not required, a separate artifact that has no Scala specific artifact postfix is published as well.

// pdal is published to maven central, but you can use following,
—repos 1in addition
resolvers ++= Seq(

Resolver. sonatypeRepo ("releases"),

Resolver. sonatypeRepo ("snapshots") // for snaphots

libraryDependencies ++= Seq(

"io.pdal" %% "pdal" % "x.x.x", // core library

"io.pdal" % "pdal-native" % "x.x.x", // jni binaries

"io.pdal" %% "pdal-scala" % "x.x.x" // 1f scala core library (if_,
—required)

)

maven central [2.1.6

The latest version is:

(https://search.maven.org/search?q=g:i0.pdal)

There is also an example SBT PDAL Demo project

264 Chapter 11. Java

https://search.maven.org/search?q=g:io.pdal
https://github.com/PDAL/java/tree/master/examples/pdal-jni

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(https://github.com/PDAL/java/tree/master/examples/pdal-jni) in the bindings repository, that
can be used for a quick start.

Compilation

Development purposes (including binaries) compilation:
1. Install PDAL (using brew / package managers (unix) / build from sources / etc)

2. Build native libs . /sbt native/nativeCompile (optionally, binaries would
be built during tests run)

3. Run . /sbt core/test torun PDAL tests
Only Java development purposes compilation:
1. Provide SLD_LIBRARY PATHor $SDYLD_LIBRARY PATH

2. If you don’t want to provide global variable you can pass
-Djava.library.path=<path> into sbt:

./sbt -Djava.library.path=<path>
3. Set PDAL_DEPEND_ON_NATIVE=false (to disable native project build)
4. Run PDAL_DEPEND_ON_NATIVE=false ./sbt

If you would like to use your own bindings binary, it is necessary to set
java.library.path:

// Mac 0S X example with manual JNI installation

// cp —f native/target/resource _managed/main/native/x86_64—-darwin/
w1libpdaljni.2.1.dylib /usr/local/lib/libpdaljni.2.1.dylib

// place built binary into /usr/local/lib, and pass java.library.
—path to your JVM

javaOptions += "-Djava.library.path=/usr/local/lib"

You can use pdal-native dep in case you don’t have installed JNI bindings and to avoid
steps described above. Dependency contains bindings for x86_64-darwin and
x86_64-11inux, other versions are not supported yet.

11.1. Java 265

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

266 Chapter 11. Java

CHAPTER
TWELVE

TUTORIALS

12.1 Tutorials

This section provides a collection of tutorials on how to use the PDAL Applications (page 25)
and Pipelines (page 45) to process data.

Note: Users looking for documentation on how to contribute to PDAL should look /ere
(page 393) and users looking to use the PDAL API in their own applications should look /ere
(page 465).

12.1.1 Reading with PDAL

Author Bradley Chambers
Contact brad.chambers@gmail.com

Date 01/21/2015

Contents

* Reading with PDAL (page 267)
— A basic inquiry example (page 268)
— A conversion example (page 269)
x Metadata (page 269)
— A Pipeline Example (page 270)
* Simple conversion (page 270)

* Loop a directory and filter it through a pipeline (page 270)

267

mailto:brad.chambers@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This tutorial is an introduction to using PDAL to read data using pdal from the command line.

A basic inquiry example

Our first example to demonstrate PDAL’s utility will be to simply query an LAS
(http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html) file to
determine the data that are in it in the very first point.

Note: The interesting.las
(https://github.com/PDAL/PDAL/blob/master/test/data/las/interesting.las 7raw=true) file in
these examples can be found on github.

pdal info outputs JavaScript JSON (http://www.json.org/).

$ pdal info interesting.las -p 0

"filename": "interesting.las",
"pdal_version": "1.0.1 (git-version: 80644d)",
"points":
{
"point":
{
"Blue": 88,
"Classification": 1,

"EdgeOfFlightLine": O,
"GpsTime": 245381,
"Green": 77,
"Intensity": 143,
"NumberOfReturns": 1,
"PointId": O,
"PointSourceId": 7326,

"Red": 68,
"ReturnNumber": 1,
"ScanAngleRank": -9,
"ScanDirectionFlag": 1,

"UserData": 132,
"X": 637012,
"y": 849028,
"zZ": 431.66

268 Chapter 12. Tutorials

http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html
https://github.com/PDAL/PDAL/blob/master/test/data/las/interesting.las?raw=true
http://www.json.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

A conversion example

Conversion of data from one format to another may be lossy, in that some data in the source
format may not be representable in the same format or at all in the destination format. For
example, some formats don’t support spatial references for point data, some have no metadata
support and others have limited dimension (page 251) support. Even when data types are
supported in both source and destination formats, there may be limitations with regard to data
type, precision or, scaling. PDAL attempts to convert data as accurately as possible, but you
should make sure that you’re aware of the capabilities of the data formats you’re using.

S pdal translate interesting.las output.txt

X", "y","z","Intensity", "ReturnNumber", "NumberOfReturns",
—"ScanDirectionFlag", "EdgeOfFlightLine", "Classification",
—"ScanAngleRank", "UserData", "PointSourceId", "Time", "Red", "Green",
—"Blue"
637012.24,849028.31,431.66,143,1,1,1,0,1,-9,132,7326,245381,68,77,88
636896.33,849087.70,446.39,18,1,2,1,0,1,-11,128,7326,245381,54,66, 68
636784.74,849106.66,426.71,118,1,1,0,0,1,-10,122,7326,245382,112,97,
114
636699.38,848991.01,425.39,100,1,1,0,0,1,-6,124,7326,245383,178,138,
162
636601.87,849018.60,425.10,124,1,1,1,0,1,-4,126,7326,245383,134,104,
134
636451.97,849250.59,435.17,48,1,1,0,0,1,-9,122,7326,245384, 99,85, 95

The text format supports all point attributes, but provides no support for metadata such as the
input spatial reference system or the LAS
(http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html) header
fields, such as UUID (http://en.wikipedia.org/wiki/Universally_unique_identifier). You may
need to preserve some more information as part of your conversion to make it useful down the
road.

Metadata

PDAL carries metadata (page 414) for each stage through the PDAL processing pipeline
(page 45). The metadata can be written in JSON form using the pdal info (page 29) command

S pdal info --metadata interesting.las

This produces metadata that looks like this. You can use your JSON (http://www.json.org/)
manipulation tools to extract this information. For formats that do not have the ability to
preserve this metadata internally, you can keep a . json file alongside the . t xt file as
auxiliary information.

12.1. Tutorials 269

http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html
http://en.wikipedia.org/wiki/Universally_unique_identifier
../_images/info-interesting-metadata.png
http://www.json.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

A Pipeline Example

The full power of PDAL comes in the form of pipeline (page 32) invocations. Pipelines allow
you to take advantage of PDAL’s ability to manipulate data as they are converted. This section
will provide a basic example and demonstration of pipeline usage. See the pipeline
specification (page 45), for more detailed exposition of the topic.

The pipeline (page 32) describes a series of processing stages to be performed in JSON format.
Each stage can be provided a set of options that control the details of processing. PDAL is
single-threaded and stages are executed in a linear order. Some stages support what is known
as “stream mode”. If all stages in a pipeline support stream mode the command is run using
using stream mode to reduce the memory processing footprint. Even when run in stream mode,
execution is single-threaded and can be thought of as linear.

Simple conversion

The following JSON (http://www.json.org/) document defines a pipeline that takes the
file.las LAS
(http://www.asprs.org/a/society/committees/standards/lidar_exchange format.html) file and
converts it to a new file called output. las.

[

"file.las",

"output.las"

Loop a directory and filter it through a pipeline

This bash script loops through a directory and pushes the las files through a pipeline,
substituting the input and output as it goes.

ls x.las | cut -d. —fl | xargs -P20 -I{} pdal pipeline -i /path/to/
—proj.json —-readers.las.filename={}.las —--writers.las.
—filename=output/{}.laz

Here is an example doing something similar with Windows PowerShell

Sindir="Documents\inlas"
Soutdir="Documents\outlas"
get—-childitem S$indir |
foreach-object {
if (S_.extension -ne ".las") {
continue

270 Chapter 12. Tutorials

http://www.json.org/
http://www.asprs.org/a/society/committees/standards/lidar_exchange_format.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Soutname = Soutdir + "\" + $_.name
pdal pipeline —-i \path\to\proj.json $_.fullname S$Soutname

12.1.2 Reading data from EPT

Introduction

This tutorial describes how to use Conda (https://conda.io), Entwine (https://entwine.io),
PDAL (https://pdal.io), and GDAL (https://gdal.org) to read data from the USGS 3DEP AWS
Public Dataset (https://www.usgs.gov/news/usgs-3dep-lidar-point-cloud-now-available-
amazon-public-dataset). We will be using PDAL’s readers.ept
(https://pdal.io/stages/readers.ept.html) to fetch data, we will filter it for noise using
filters.outlier (https://pdal.io/stages/filters.outlier.html), we will classify the data as
ground/not-ground using filters.smrf (https://pdal.io/stages/filters.smrf.html), and we will write
out a digital terrain model with writers.gdal (page 112). Once our elevation model is
constructed, we will use GDAL gdaldem (https://www.gdal.org/gdaldem.html) operations to
create hillshade, slope, and color relief.

Install Conda

We first need to install PDAL, and the most convenient way to do that is by installing
Miniconda (https://docs.conda.io/en/latest/miniconda.html). Select the 64-bit installer for your
platform and install it as directed.

Install PDAL

Once Miniconda is installed, we can install PDAL into a new Conda Environment
(https://docs.conda.io/projects/conda/en/latest/user-guide/concepts.html) that we created for
this tutorial. Open your Anaconda Shell and start issuing the following commands:

1. Create the environment

conda create -n iowa -y

2. Activate the environment

conda activate iowa

3. Install PDAL

12.1. Tutorials 271

https://conda.io
https://entwine.io
https://pdal.io
https://gdal.org
https://www.usgs.gov/news/usgs-3dep-lidar-point-cloud-now-available-amazon-public-dataset
https://www.usgs.gov/news/usgs-3dep-lidar-point-cloud-now-available-amazon-public-dataset
https://pdal.io/stages/readers.ept.html
https://pdal.io/stages/filters.outlier.html
https://pdal.io/stages/filters.smrf.html
https://www.gdal.org/gdaldem.html
https://docs.conda.io/en/latest/miniconda.html
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

conda install -c conda-forge pdal -y
4. Ensure PDAL works by listing the available drivers

pdal —--drivers

(iowa) [hobuRkasai ~]S$ pdal --drivers

Once you confirmed you see output similar to that in your shell, your PDAL installation should
be good to go.

Write the Pipeline

PDAL uses the concept of pipelines (https://pdal.io/pipeline.html) to describe the reading,
filtering, and writing of point cloud data. We will construct a pipeline that will do a number of
things in succession.

readers.ept filters.range filters.assign
readdata nonoise
readdata > nonoise > wipeclasses
https:/aws... Classification![7:7] Classification[]=0
bounds ~— ~——
(filters.reprojection\ (filters.smrf N (filters.range)
wipeclasses reprojectUTM groundify
—> reprojectUTM > groundify > classify
L EPSG:26915) L) \CIassification[2:2] y

e

p
writers.gdal writers.las
classify classify
iowa.tif iowa.laz
-9999 0.01
idw auto
0.7071 N
1.0
6

—

Fig. 12.1: Pipeline diagram. The data are read from the Entwine Point Tile
(https://entwine.io/entwine-point-tile.html) resource at https://usgs.entwine.io for Iowa using
readers.ept (page 55) and filtered through a number of steps until processing is complete. The
data are then written to an iowa.laz and iowa.tif file.

272 Chapter 12. Tutorials

https://pdal.io/pipeline.html
https://entwine.io/entwine-point-tile.html
https://usgs.entwine.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Pipeline

1. Create a file called iowa . json with the following content:

Note: The file is also available from
https://gist.github.com/hobu/ee22084e24ed7e3c0d10600798a94c31 for convenient
copy/paste)

"pipeline": [

{
"bounds": " ([-10425171.940, -10423171.940], [5164494.710, 5166494.
~7101) ™,
"filename": "https://s3-us-west-2.amazonaws.com/usgs—lidar—-public/IA_
—FullState",
"type": "readers.ept",
"tag": "readdata"
y
{
"limits": "Classification![7:7]",
"type": "filters.range",
"tag": "nonoise"
}I
{
"assignment": "Classification[:]=0",
"tag": "wipeclasses",
"type": "filters.assign"
b
{
"out_srs": "EPSG:26915",
"tag": "reprojectUTM",
"type": "filters.reprojection"
b
{
"tag": "groundify",
"type": "filters.smrf"
b
{
"limits": "Classification[2:2]",
"type": "filters.range",
"tag": "classify"
b
{
"filename": "iowa.laz",
"inputs": ["classify" 1,

12.1. Tutorials

273

https://gist.github.com/hobu/ee22084e24ed7e3c0d10600798a94c31

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"tag": "writerslas",
"type": "writers.las"

"filename": "iowa.tif",

"gdalopts": "tiled=yes, compress=deflate",
"inputs": ["writerslas"],

"nodata": -9999,

"output_type": "idw",

"resolution": 1,

"type": "writers.gdal",

"window_size": 6

Stages
readers.ept

readers.ept (page 55) reads the point cloud data from the EPT resource on AWS. We give it a
URL to the root of the resource in the £i1ename option, and we also give it a bounds object
to define the window in which we should select data from.

The bounds object is in the form ([minx, maxx], [miny, maxy]).

Warning: If you do not define a bounds option, PDAL will try to read the data for the
entire state of lowa, which is about 160 billion points. Maybe you have enough memory for
this. ..

readers.ept

readdata

https://aws...

bounds
|

Fig. 12.2: The EPT reader reads data from an EPT resource with PDAL. Options available in
PDAL 1.9+ allow users to select data at or above specified resolutions.

filters.range

The data we are selecting may have noise properly classified, and we can use filters.range
(page 214) to keep all data that does not have a Classification Dimensions (page 251)

274 Chapter 12. Tutorials

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

value of 7.

—
filters.range

readdata

nonoise

Classification![7:7]
Fig. 12.3: The filters.range (page 214) filter utilizes range selection to allow users to select
data for processing or removal. The filters.mongoexpression filter can be used for even more
complex logic operations.

filters.assign

After removing points that have noise classifications, we need to reset all of the classification
values in the point data. filters.assign (page 142) takes the expression Classification
[: 1=0 and assigns the Classification for each point to 0.

filters.assign

nonoise

wipeclasses

Classification[:]=0
Fig. 12.4: filters.assign (page 142) can also take in an option to apply assignments based on
a conditional. If you want to assign values based on a bounding geometry, use filters.overlay
(page 178).

filters.reprojection

The data on the AWS 3DEP Public Dataset are stored in Web Mercator
(https://en.wikipedia.org/wiki/Web_Mercator_projection) coordinate system, which is not

suitable for many operations. We need to reproject them into an appropriate UTM coordinate
system (EPSG:26915 (https://epsg.io/32615)).

(o . =
filters.reprojection

wipeclasses
reprojectUTM

EPSG:26915

Fig. 12.5: filters.reprojection (page 197) can also take override the incoming coordinate system
using the a_ srs option.

filters.smrf

The Simple Morphological Filter (filters.smrf (page 185)) classifies points as ground or
not-ground.

12.1. Tutorials 275

https://en.wikipedia.org/wiki/Web_Mercator_projection
https://epsg.io/32615

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

filters.smrf
reprojectUTM
groundify

~—

Fig. 12.6: filters.smrf (page 185) provides a number of tuning options, but the defaults tend to
work quite well for mixed urban environments on flat ground (ie, lowa).

filters.range

After we have executed the SMREF filter, we only want to keep points that are actually
classified as ground in our point stream. Selecting for points with Classification[2:2]
does that for us.

—
filters.range

groundify
classify

Classification[2:2]

Fig. 12.7: Remove any point that is not ground classification for our DTM generation.

writers.gdal

Having filtered our point data, we’re now ready to write a raster digital terrain model with
writers.gdal (page 112). Interesting options we choose here are to set the nodata value,
specify only outputting the inverse distance weighted raster, and assigning a resolution of 1
(m). See writers.gdal (page 112) for more options.

writers.gdal

classify

iowa.tif
-9999
idw
0.7071
1.0

6
~—

Fig. 12.8: Output a DTM at 1m resolution.

writers.las

We can also write a LAZ file containing the same points that were used to make the elevation
model in the section above. See writers.las (page 117) for more options.

Execute the Pipeline

1. Save the PDAL pipeline in Pipeline (page 273) to a file called iowa. json

276 Chapter 12. Tutorials

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

classify

iowa.laz
0.01

auto
~———

Fig. 12.9: Also output the LAZ file as part of our processing pipeline.

2. Invoke the PDAL pipeline (https://pdal.io/pipeline.html) command

pdal pipeline iowa. json

Add the ——debug option if you would like information about how PDAL is fetching
and processing the data.

pdal pipeline iowa.json —-debug

3. Save a color scheme to dem—colors.txt

Color ramp for Iowa State Campus
270.187,250,250,250,255,270.2
272.059,230,230,230,255,272.1
272.835,209,209,209,255,272.8
273.985,189,189,189,255,274
276.204,168,168,168,255,276.2
277.835,148,148,148,255,277.8
279.199,128,128,128,255,279.2
280.964,107,107,107,255,281
282.809,87,87,87,255,282.8
283.745,66,66,66,255,283.7
284.547,46,46,46,255,284.5
286.526,159,223,250,255,286.5
296.901,94,139,156,255,296.9

4. Invoke gdaldem to colorize a PNG file for your TIFF

gdaldem color-relief iowa.tif dem-colors.txt iowa-color.png

5. View your raster

12.1.3 LAS Reading and Writing with PDAL

Author Howard Butler
Contact howard @hobu.co
Date 3/27/2017

12.1. Tutorials 277

https://pdal.io/pipeline.html
mailto:howard@hobu.co

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Table of Contents

* LAS Reading and Writing with PDAL (page 277)
— Introduction (page 278)
— LAS Versions (page 278)
— Spatial Reference System (page 279)
— Point Formats (page 282)
— Extra Dimensions (page 283)
— Required Header Fields (page 284)
— Coordinate Scaling (page 285)
— Compression (page 286)

— PDAL Metadata (page 288)

This tutorial will describe reading and writing ASPRS LAS
(http://www.asprs.org/Committee-General/LLASer-LAS-File-Format-Exchange-Activities.html)
data with PDAL, discuss the capabilities that PDAL readers.las (page 69) and writers.las
(page 117) can provide for this format.

Introduction

ASPRS LAS
(http://www.asprs.org/Committee-General/LLASer-LAS-File-Format-Exchange-Activities.html)
is probably the most commonly used LiDAR (https://en.wikipedia.org/wiki/Lidar) format, and
PDAL’s support of LAS is important for many users of the library. This tutorial describes and
demonstrates some of the capabilities the drivers provide, points out items to be aware of when

using the drivers, and hopefully provides some examples you can use to get what you need out
of the LAS drivers.

LAS Versions

There are five LAS versions — 1.0 to 1.4. Each iteration added some complexity to the format in
terms of capabilities it supports, possible data types it stores, and metadata. Users of LAS must
balance the features they need with the use of the data by downstream applications. While LAS
support in some form is quite widespread throughout the industry, most applications do not
support every feature of each version. PDAL works to provide many of these features, but it is
also incomplete. Specifically, PDAL doesn’t support point formats that store waveform data.

278 Chapter 12. Tutorials

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
https://en.wikipedia.org/wiki/Lidar

© e N ! R W N =

S

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Version Example

We can use the minor_version option of writers.las (page 117) to set the version PDAL
should output. The following example will write a 1.1 version LAS file. Depending on the
features you need, this may or may not be what you want.

[

"type" : "readers.las",
"filename" : "input.las"

"type" : "writers.las",
"minor_version": 1,
"filename" : "output.las"

Note: PDAL defaults to writing a LAS 1.2 version if no minor_version is specified or the
forward option of writers.las (page 117) is not used to carry along a version from a
previously read file.

Spatial Reference System

LAS 1.0 to 1.3 use GeoTIFF (https://trac.osgeo.org/geotiff/) keys for storing coordinate system
information, while LAS 1.4 uses Well Known Text
(https://en.wikipedia.org/wiki/Well-known_text#Coordinate_reference_systems). GeoTIFF is
well-supported by most software that read LAS, but it is not possible to express some
coordinate system specifics with GeoTIFF. WKT is supports more coordinate systems than
GeoTIFF, but vendor-specific and later versions (WKT 2) may not be handled well.

Assignment Example

The PDAL writers.las (page 117) allows you to override or assign the coordinate system to an
explicit value if you need. Often the coordinate system defined by a file might be incorrect or
non-existent, and you can set this with PDAL.

The following example sets the a_ srs option of the writers.las (page 117) to EPSG:4326.

[

"type" : "readers.las",

12.1. Tutorials 279

https://trac.osgeo.org/geotiff/
https://en.wikipedia.org/wiki/Well-known_text#Coordinate_reference_systems

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"filename" : "input.las"

"type" : "writers.las",
"a_srs": "EPSG:4326",
"filename" : "output.las"

Note: Remember to set of fset_x, offset_vy, scale_x, and scale_y values to
something appropriate if your are storing decimal degree data in LAS files. The special value
auto can be used for the offset values, but you should set an explicit value for the scale values
to prevent overdriving the precision of the data and disrupting Compression (page 286) with
LASzip (http://laszip.org).

Vertical Datum Example

Vertical coordinate control is important in LiDAR (https://en.wikipedia.org/wiki/Lidar) and
PDAL supports assignment and reprojection/transform of vertical coordinates using Proj.4
(http://proj4.org) and GDAL (http://gdal.org/). The coordinate system description magic
happens in GDAL, and you assign a compound coordinate system (both vertical and horizontal
definitions) using the following syntax:

EPSG:4326+3855

This assignment states typical 4326 horizontal coordinate system plus a vertical one that
represents EGM08
(http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html). In Well
Known Text (https://en.wikipedia.org/wiki/Well-known_text#Coordinate_reference_systems),
this coordinate system is described by:

$ gdalsrsinfo "EPSG:4326+3855"

COMPD_CS["WGS 84 + EGM2008 geoid height",
GEOGCS ["WGS 84",

DATUM["WGS_1984",

SPHEROID["WGS 84", 6378137,298.257223563,
AUTHORITY["EPSG","7030"]1,

AUTHORITY["EPSG","6326"]1],

PRIMEM["Greenwich", 0,
AUTHORITY["EPSG","8901"]1],

UNIT["degree",0.0174532925199433,

280 Chapter 12. Tutorials

http://laszip.org
https://en.wikipedia.org/wiki/Lidar
http://proj4.org
http://gdal.org/
http://earth-info.nga.mil/GandG/wgs84/gravitymod/egm2008/egm08_wgs84.html
https://en.wikipedia.org/wiki/Well-known_text#Coordinate_reference_systems
https://en.wikipedia.org/wiki/Well-known_text#Coordinate_reference_systems

=T T - ¥ N T N

S

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

AUTHORITY ["EPSG", "9122"]1,
AUTHORITY["EPSG", "4326"]1,
VERT_CS["EGM2008 geoid height",
VERT_DATUM["EGM2008 geoid", 2005,
AUTHORITY["EPSG","1027"],
EXTENSION["PROJ4_GRIDS", "egm08_25.gtx"]11,
UNIT["metre",1,
AUTHORITY ["EPSG", "9001"]1,
AXIS["Up",UP],
AUTHORITY["EPSG", "3855"]]

As in Assignment Example (page 279), it is common to need to reassign the coordinate system.
The following example defines both the horizontal and vertical coordinate system for a file to
UTM Zone 15N NADS83 (http://epsg.10/26915) for horizontal and NAVDS8
(http://epsg.10/5703) for the vertical.

[

"type" : "readers.las",
"filename" : "input.las"

"type" : "writers.las",
"a _srs": "EPSG:26915+5703",
"filename" : "output.las"

Note: Any coordinate system description format supported by GDAL’s SetFromUserInput
(http://www.gdal.org/ogr__srs__api_8h.html#a927749db01cec3af8aa5e577d032956bk)
method can be used to assign or set the coordinate system in PDAL. This includes WKT, Proj.4
(http://proj4.org) definitions, or OGC URN:S. It is your responsibility, however, to escape or
massage any input data to make it be valid JSON.

Reprojection Example

A common desire is to transform the coordinates of an ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
file from one coordinate system to another. The mechanism to do that with PDAL is

filters.reprojection (page 197).

[

12.1. Tutorials 281

http://epsg.io/26915
http://epsg.io/5703
http://www.gdal.org/ogr__srs__api_8h.html#a927749db01cec3af8aa5e577d032956bk
http://proj4.org
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type" : "readers.las",
"filename" : "input.las"

by

{
"type":"filters.reprojection",

"out_srs":"EPSG:26915"

"type" : "writers.las",
"filename" : "output.las"

Note: If the input data doesn’t specify a projection, you must specify the in_srs option of
filters.reprojection (page 197). in_srs can also be used to override an existing spatial
reference attached to the input point set.

Point Formats

As each revision of LAS was released, more point formats were added. A point format is the
fixed set of dimensions (page 251) that a LAS file stores for each point in the file. For any point
format, the size and composition of dimensions is consistent across versions, but users should
be aware of some minor interpretation changes based on LAS file version. For example, a
classification value of 11 in version 1.4 indicates “Road Surface”, while that value is reserved
in version 1.1.

Point Format Example

Point format or dataformat_id is an integer that defines the set of fixed dimensions (page 251)
stored for each point in a LAS file. All point formats specify the following dimensions as part
of a point record:

Table 12.1: Base LAS Dimensions

X Y Z

Intensity ReturnNumber NumberOfReturns
ScanDirectionFlag | EdgeOfFlightLine | Classification
ScanAngleRank UserData PointSourceld

Because LAS files have no built-in compression, it’s important to use a point format that stores
the fewest fields possible that store the desired data. For example, point format 10 uses 45
more bytes per point than point format zero.

282 Chapter 12. Tutorials

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

If one wanted remove the Red/Green/Blue fields from a LAS file (one using point format 2),
one could simply set the dataformat_id option to 0. The forward option can also be set
to carry forward all possible header values from the source file to the new, smaller file.

[

"type" : "readers.las",
"filename" : "input.las"

"type" : "writers.las",
"forward": "all",
"dataformat_id": O,
"filename" : "output.las"

Note: The LLASzip (http://laszip.org) storage of GPSTime and Red/Green/Blue fields with no
data is perfectly efficient.

Extra Dimensions

A LAS Point Format ID defines the fixed set of dimensions (page 251) a file must store, but
softwares are allowed to store extra data beyond that fixed set. This feature of the format was
regularized in LAS 1.4 as something called “extra bytes” or “extra dims”, but previos versions
can also store these extra per-point attributes.

Extra Dimension Example

LAS 1.4 provides for the storage of dimensions not part of the chosen point format by
appending them to each point record. PDAL supports this feature when writing files with the
“extra_dims” option. The following example will store all source dimensions in the output file
and place a description of the dimensions that aren’t part of the point format in an “‘extra bytes”
VLR:

[
"some_non_las_file",
{
"type" : "writers.las",
"extra_dims": "all",
"minor_version" : "4",
"filename" : "output.las"

12.1. Tutorials 283

http://laszip.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Required Header Fields

Readers of the ASPRS LAS Specification will see there are many fields that softwares are
required to write, with their content mandated by various options and configurations in the
format. PDAL does not assume responsibility for writing these fields and coercing meaning
from the content to fit the specification. It is the PDAL users’ responsibility to do so. Fields
where this might matter include:

* project_id

global_encoding

* system_id

software_id

filesource_id

Header Fields Example

The “forward” option of writers.las (page 117) is the easiest way to get most of what you
might want in terms of header settings copied from an input to an output file upon processing.
Imagine the scenario of zero’ing out the classification values for an LAS file in preparation for
using filters.pmf (page 181) to reassign them. During this scenario, we’d like to keep all of the
other LAS header information, such as Variable Length Records (page 286), extent
information, and format settings.

[

"type" : "readers.las",
"filename" : "input.las"

"type" : "filters.assign",
"assignment" : "Classification[0:32]=0"

"type" : "filters.pmf",
"cell _size" : 2.5,
"approximate" : false,
"max_distance" : 25

284 Chapter 12. Tutorials

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type" : "writers.las",
"forward": "all",
"filename" : "output.las"

Note: If multiple input LAS files are being written to an output file, the forward option can
only preserve values when they are the same in all input files. If the values differ, a default will
be used (as it would if the forward option weren’t supplied). You can specify specific option
values for output that will also override any forwarded data.

Coordinate Scaling

LAS stores coordinates as 32 bit integers. It is the user’s responsibility to ensure that the
coordinate domain required by the data in the file fits within the 32 bit integer domain. Most
coordinate values have digits to the right of the decimal point that must be preserved for
sufficient accuracy. Using the scale factor allows for integers to be interprested as floating
point values when read by software.

When writing data to LAS, choosing an appropriate scale factor should take into account not
just the maximum precision that can be accommodated by the format, but the actual precision
of the data. Using a precision greater than the resolution of the data collection can mislead
users as to the actual measurement precision of the data. In addition, it can lead to larger files
when writing compressed data with LASzip (http://laszip.org).

Auto Offset Example

Users can allow PDAL select scale and offset values for data with the aut o option. This can
have some detrimental effects on downstream processing. auto for scale values will use the
entire 32-bit integer domain. This maximizes the precision available to store the data, but this
will have a detrimental effect on LASzip (http://laszip.org) storage efficiency. aut o for offset
calculation is just fine, however. When given the option, choose to store ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data with an explicit scale for the X, Y, and Z dimensions that represents actual expected data
precision, not artificial storage precision or maximal storage precision.

[

"type" : "readers.las",
"filename" : "input.las"
b
{

12.1. Tutorials 285

http://laszip.org
http://laszip.org
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type" : "writers.las",
"scale_x":"0.0000001",
"scale_y":"0.0000001",
"scale_z":"0.01",
"offset_x":"auto",
"offset_y":"auto",
"offset_z":"auto",
"filename" : "output.las"

Compression

LASzip (http://laszip.org) is an open source, lossless compression technique for ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data. It is supported by two different software libraries, and it can be used in both the C/C++
and the JavaScript execution environments. LAZ support is provided by both readers.las

(page 69) and writers.las (page 117). It can be enabled by setting the compression option
to laszip.

Compression Example

Providing a filename with a . 1az extension will write compressed data. Compression can be
turned on explicitly as well:

[

"type" : "readers.las",
"filename" : "input.las"

"type" : "writers.las",
"compression":"laszip",
"filename" : "output.laz"

Variable Length Records

Variable Length Records, or VLRs, are binary data that the LAS format supports to allow
applications to store their own data. Coordinate system information is one type of data stored
in VLRs, and many different LAS-using applications store data and metadata with this format

286 Chapter 12. Tutorials

http://laszip.org
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

capability. PDAL allows users to access VLR information, forward it along to newly written
files, and create VLRs that store processing history information.

Common VLR data include:
* Coordinate system
* Metadata
* Processing history

* Indexing

Note: There are VLRs that are defined by the specification, and they have the VLR user_id
of LASF_Spec or LASF_Projection. LASF_Spec VLRs provide a description of the data
beyond that available in the header. LASF_Projection VLRs store the spatial coordinate system
of the data.

For LAS 1.0-1.3, the VLR length could be no larger than 65535 bytes. Version 1.4 introduced
extended VLRs, stored at the end of the file, which could be up to 4gb in size.

VLR Example

You can add your own VLRs to files to store processing information or whatever you want by
providing a JSON block via writers.las (page 117) v1rs option that defines the user_id and
data items for the VLR. The data option must be base64
(https://en.wikipedia.org/wiki/Base64)-encoded string output. The data will be converted to
binary information and stored in the VLR when the file is written.

[

"input.las",

{

"type":"writers.las",
"filename":"output.las",
"wlrs": | {
"description": "A description under 32 bytes",
"record_id": 42,
"user_id": "hobu",
"data": "dGhpcyBpcyBzb211IHR1eHQ="
bo
{
"description": "A description under 32 bytes",
"record id": 43,
"user_id": "hobu",
"data": "dGhpcyBpcyBzb21lIGlvcmUgdGV4dA=="

}

12.1. Tutorials 287

https://en.wikipedia.org/wiki/Base64

© e N ;R W N =

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

PDAL Metadata

The writers.las (page 117) driver supports an option, pdal_metadata, that writes two
PDAL VLRs to LAS files. The first is the equivalent of info (page 29)’s ——metadata output.
The second is a copy of the output of the ——pipeline serialization option that describes all
stages and options of the pipeline that created the file. These two VLRs may be useful in
tracking down processing history of data, allow you to determine which versions of PDAL may
have written a file and what filter options were set when it was written, and give you the ability
to store metadata and other information via pipeline user_data from your own applications.

Metadata Example

The pipeline used to construct the file and all of its Metadata (page 414) can be written into
VLRs in ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
files under the PDAL VLR key (http://www.asprs.org/misc/las-key-list.html).

"type" : "readers.las",
"filename" : "input.las"

"type" : "writers.las",
"pdal_metadata":"true",
"filename" : "output.laz"

Warning: LAS versions prior to 1.4 only support VLRs of at most 64K of information. It
is possible, though improbable, that the metadata or pipeline stored in the VLRs will not fit
in that space.

12.1.4 Clipping with Geometries

Author Howard Butler

288 Chapter 12. Tutorials

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://www.asprs.org/misc/las-key-list.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Contact howard @hobu.co
Date 11/09/2015

Introduction

This tutorial describes how to construct a pipeline that takes in geometries and clips out data
with given geometry attributes. It is common to desire to cut or clip point cloud data with 2D
geometries, often from auxillary data sources such as OGR (http://www.gdal.org)-readable
Shapefiles (https://en.wikipedia.org/wiki/Shapefile). This tutorial describes how to construct a
pipeline that takes in geometries and clips out point cloud data inside geometries with
matching attributes.

Contents

* Clipping with Geometries (page 288)

Introduction (page 289)

Example Data (page 289)

Stage Operations (page 289)

Data Preparation (page 290)

Pipeline (page 291)

Processing (page 292)

Conclusion (page 293)

Example Data
This tutorial utilizes the Autzen dataset. In addition to typical PDAL software (fetch it from
Download (page 13)), you will need to download the following two files:

* https://github.com/PDAL/data/autzen/autzen.laz

* https://github.com/PDAL/PDAL/raw/master/test/data/autzen/attributes.json

Stage Operations

This operation depends on two stages PDAL provides. The first is the filters.overlay (page 178)
stage, which allows you to assign point values based on polygons read from OGR
(http://www.gdal.org). The second is filters.range (page 214), which allows you to keep or
reject points from the set that match given criteria.

12.1. Tutorials 289

mailto:howard@hobu.co
http://www.gdal.org
https://en.wikipedia.org/wiki/Shapefile
https://github.com/PDAL/data/autzen/autzen.laz
https://github.com/PDAL/PDAL/raw/master/test/data/autzen/attributes.json
http://www.gdal.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

See also:

filters.python (page 242) allow you to construct sophisticated logic for keeping or rejecting
points in a more expressive environment.

Data Preparation

5 .
7 E‘ ﬁf@ = I TR G I, OB ot N % B :.: » g » D » e » 1S »
(-] 08 Tree 0060 3D View 1

v 9 autz..
D a.

Camera Link

(x5 Console

[16:55:55] [LASFilter::loadFile] Cloud has been recentered! Translation: (-635577.79,-848882.15,-406.14)
Fig. 12.10: Autzen Stadium, a 100 million+ point cloud file.

The data are mixed in two different coordinate systems. The LAZ (page 69) file is in Oregon
State Plane Ft.
(http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx) and
the GeoJSON (http://geojson.org) defining the polygons is in EPSG:4326 (http://epsg.i0/4326).
We have two options — project the point cloud into the coordinate system of the attribute
polygons, or project the attribute polygons into the coordinate system of the points. The latter
is preferable in this case because it will be less math and therefore less computation. To make
it convenient, we can utilize OGR (http://www.gdal.org)’s VRT
(http://www.gdal.org/drv_vrt.html) capability to reproject the data for us on-the-fly:

<OGRVRTDataSource>
<OGRVRTWarpedLayer>
<OGRVRTLayer name="OGRGeoJSON">
<SrcDataSource>attributes. json</SrcDataSource>
<LayerSRS>EPSG:4326</LayerSRS>
</OGRVRTLayer>
<TargetSRS>tproj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_
—~0=-120.5 +x_0=399999.9999999999 +y_0=0 +ellps=GRS80 +units=ft +no_
—defs</Target SRS>
</OGRVRTWarpedLayer>
</OGRVRTDataSource>

290 Chapter 12. Tutorials

http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx
http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx
http://geojson.org
http://epsg.io/4326
http://www.gdal.org
http://www.gdal.org/drv_vrt.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: The GeoJSON file does not have an externally-defined coordinate system, so we are
explictly setting one with the LayerSRS parameter. If your data does have coordinate system
information, you don’t need to do that.

Save this VRT definition to a file, called attributes.vrt in the same location where you
stored the autzen.laz and attributes. json files.

The attribute GeoJSON file has a couple of features with different attributes. For our scenario,

we want to clip out the yellow-green polygon, marked number “5”, in the upper right hand
corner.

[xX5) Eurww’
LY ®*O

» [Home
"¢ Favourites
> m/
» [Nolumes
» mssaL
» @ PosiGIS
/ SpatiaLite
» O Ows
@& Wes
& WFs
» @ WMS

\]
b

Fig. 12.11: We want to clip out the polygon in the upper right hand corner. We can view the
GeoJSON (http://geojson.org) geometry using something like QGIS (http://qgis.org)
Pipeline

A PDAL pipeline (page 45) is how you define a set of actions to apply to data as they are read,
filtered, and written.

[

"autzen.laz",

{
"type":"filters.overlay",
"dimension":"Classification",
"datasource":"attributes.vrt",
"layer" :"OGRGeoJSON",
"column":"CLS"

12.1. Tutorials 291

http://geojson.org
http://qgis.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"filters.range",
"limits":"Classification[5:5]"
Iy

"output.las"

readers.las (page 69): Define a reader that can read ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-
Activities.html) or LASzip (http://laszip.org)

data.

filters.overlay (page 178): Using the VRT we defined in Data Preparation (page 290),
read attribute polygons out of the data source and assign the values from the CLS column
tothe Classification field.

filters.range (page 214): Given that we have set the Classification values for the
points that have coincident polygons to 2, 5, and 6, only keep Classification
values in the range of 5: 5. This functionally means we’re only keeping those points
with a classification value of 5.

writers.las (page 117): write our content out using an ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-
Activities.html)

writer.

Note: You don’t have to use only Classification to set the attributes with filters.overlay
(page 178). Any valid dimension name could work, but most LiDAR softwares will display
categorical coloring for the Classification field, and we can leverage that behavior in
this scenario.

Processing

1.

Save the pipeline to a file called shape—-clip. json in the
same directory as your attributes. json and autzen. laz files.

Run pdal pipeline on the json file.

S pdal pipeline shape-clip.json

. Visualize output . las in an environment capable of viewing it. http://plas.io or

CloudCompare (http://www.danielgm.net/cc/) should do the trick.

292

Chapter 12. Tutorials

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://plas.io
http://www.danielgm.net/cc/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

plas.io

[cC f plas.io

Read Later Wk stadium WB stadium2 W stadium3 Wk downtown W liberty 4% 3D Robotics

FILE

CHOOSE DATA
DISPLAY

Browse

Open

WebGL 1.0 (OpenGL ES 2.0 Chromium), Provider: WebKit

Conclusion

PDAL allows the composition of point cloud operations. This tutorial demonstrated how to use
the filters.overlay (page 178) and filters.range (page 214) stages to clip points with shapefiles.

12.1.5 Ground Filter Tutorial

Author Bradley Chambers
Contact brad.chambers@ gmail.com

Date 04/17/2017

Background

In previous tutorials we introduced our implmentation of the Progressive Morphological Filter
(PMF) (page 181), a ground kernel (page 27) to simplify command-line access to PMF, and a
filter for removing outliers (page 174).

This tutorial will highlight some recent enhancements to the PDAL library, in the context of a
ground segmentation workflow. Specifically, we will discuss:

* Constructing and executing a “filters-only” pipeline

* Resetting existing classifications prior to processing

* Using Extended Local Minimum (ELM) to identify low outliers

» Using Simple Morphological Filter (SMRF) as an alternative to PMF

12.1. Tutorials 293

mailto:brad.chambers@gmail.com

20

21

22

23

24

25

26

27

28

29

30

31

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

* Ignoring outliers during ground segmentation
* Considering only last returns during ground segmentation

» Extracting ground returns as a post-processing step

Note: The pipeline discussed in this tutoral requires PDAL v1.5
(https://github.com/PDAL/PDAL/releases/tag/1.5.0).

The Pipeline

Begin by creating a new file called pipeline. json with the following contents.

{
"pipeline": [
{
"type":"filters.reprojection",
"out_srs":"EPSG:32632"

by

"type":"filters.assign",
"assignment":"Classification[:]=0"

"type":"filters.elm"

"type":"filters.outlier"

"type":"filters.smrf",
"last":true,
"ignore":"Classification[7:7]",
"slope":0.2,

"window":16,

"threshold":0.45,

"scalar":1.2

"type":"filters.range",
"limits":"Classification[2:2]"

294 Chapter 12

. Tutorials

https://github.com/PDAL/PDAL/releases/tag/1.5.0

o v AW

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: For users familiar with PDAL pipelines, this example may seem to be missing a couple
of very important stages, namely the reader and writer! A new feature of PDAL is the ability to
provide a PDAL pipeline with no reader or writer stages to the translate (page 38) command.
The input and output filenames can be specified on the command line and will be automatically
inserted into the pipeline by the application.

The Explanation

We continue by explaining the various stages of the pipeline in order.

Reprojecting Data

Many of PDAL’s default parameters are specified in meters, and individual filter stages
typically assume that units are at least uniform in X, Y, and Z. Because data will not always be
provided in this way, PDAL pipelines should account for any data reprojections and parameter
scaling that are required from one dataset to the next.

{

"type":"filters.reprojection",
"out_srs":"EPSG:32632"
}o

In this example, we show data being reprojected to EPSG: 32632 with X, Y, and Z in meters.

Assigning Classification Values

Let’s assume that you have been given an LAS file that contains per point classifications, but
you’d like to start with a clean slate and derive your own classifications with your PDAL
pipeline.

PDAL’s assign filter (page 142) has been added to assign values to a given dimension. In our
example, a single option has been provided that specifies the dimension, range, and value to
assign. In this case, we are stating that we would like to apply a value of 0 to the
Classification dimension for every point.

{
"type":"filters.assign",
"assignment":"Classification[:]=0"

by

12.1. Tutorials 295

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: Previously, you could do the same thing (with a slightly different syntax) using
filters.attribute, but this filter has been deprecated and split into filters.assign
(page 142) and filters.overlay (page 178).

Extended Local Minimum

The Extended Local Minimum (ELM) method (page 155) helps to identify low noise points that
can adversely affect ground segmentation algorithms. ELLM was first published in [Chen2012]
(page 539) as part of the upward-fusion method of DTM generation. Noise points are
classified with a value of 7 in keeping with the LAS specification.

{
"type":"filters.elm"

y

Outliers

PDAL’s outlier filter (page 174) provides two methods of outlier detection at the moment:
radius and statistical. Both aim to identify points that are isolated and likely arise
from noise sources. Noise points are classified with a value of 7 in keeping with the LAS
specification.

{

"type":"filters.outlier"

by

Ground Segmentation

The Simple Morphological Filter (SMRF) (page 185) [Pingel2013] (page 540) is a newer
addition to PDAL that has quietly existed in an alpha state since v1.3. With the release of
PDAL v1.5, our SMRF implementation is much more complete, although it only implements
nearest neighbor void filling and not the authors’ preferred “Springs” algorithm.

The changes to SMRF between PDAL v1.3 and v1.5 are substantial. The original version had
actually drifted quite far from the authors’ published approach, namely in the area of filling
voids. We have reverted the code to match the published work, but for now are only using the
nearest neighbors approach to filling voids. The morphological operations are also accelerated
by moving to an iterative approach and using a diamond struturing element.

296 Chapter 12. Tutorials

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"filters.smrf",
"last":true,
"ignore":"Classification([7:7]",
"slope":0.2,

"window":16,

"threshold":0.45,

"scalar":1.2

ty

In addition to specifying some of the SMRF-specific arguments, our example also
demonstrates the use of two optional pre-filtering capabilities: ignore and last.

The ignore option accepts a range (page 215), here indicating that we have points marked as
noise (i.e., Classification of 7) that should be excluded from ground segmentation, but
are kept as part of the output dataset.

The 1ast option, when set to t rue indicates that we would like to only consider last returns
for ground segmentation when return information is available. Again, returns that are not “last
returns” are still retained in the output dataset - they are simply ignored for the purposes of
ground segmentation.

Note: Many lidar systems provide return information. This includes the number of returns per
pulse and the order of a particular return within the pulse. Where the return number and
number of returns are equal, we call this a last return.

Last returns are not by definition ground returns. In fact, the first and only return from surfaces
such as rooftops will also be last returns, and last returns within dense foliage may not ever
make it all the way to ground. Still, whenever there are multiple returns within a pulse, it
stands to reason that anything before the last return would not be from the ground.

Some bare earth algorithms explicitly operate on last returns only. In this case, this logic will
presumably be implemented within the filter stage itself. That being said, it stands to reason
that any ground segmentation approach could be improved by excluding all returns but the
so-called last returns. Neither PMF nor SMRF make this assertion, but our implementations
still consider only last returns by default. This behavior can be changed by setting
last=false.

For an example of how to filter on last returns outside the context of SMRF and PMEF, see this
(https://github.com/PDAL/PDAL/blob/master/test/data/pipeline/predicate-keep-last-
return.json.in) within PDAL’s source

tree.

Note: SMREF is not intended to be a replacement for the Progressive Morphological Filter
(PMF) (page 181) [Zhang2003] (page 540). Rather, it is offered as an alternative. PMF has

12.1. Tutorials 297

https://github.com/PDAL/PDAL/blob/master/test/data/pipeline/predicate-keep-last-return.json.in

26

27

28

29

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

been a part of PDAL since v1.0, first as part of the PCL plugin and now as filters.pmf.
Since PDAL v1.4, we have fixed a number of bugs, and have accelerated the approximate mode
by implementing iterative morphological operations and using a diamond structuring element.

Extracting Ground Returns

Any time we have points classified as ground, we may wish to extract just these points, e.g., to
create a digital terrain model (DTM). In this case, we use a range filter (page 214) as shown.

{
"type":"filters.range",
"limits":"Classification[2:2]"

}

The range filter (page 214) accepts a 1 imit s option that identifies the dimension(s) on which
to filter and the range (page 215) of values to passthrough. In this case, we are indicating that
the filter should only pass points whose Classification value is equal to 2.

Note: The default behavior of both PMF (page 181) and SMRF (page 185) is to classify
points, which has not changed from previous versions of PDAL. The ext ract and
classify options have been removed in PDAL v1.5. These filters now only classify points,
such that ground points can be identified and filtered downstream, as we have shown with the
range filter above.

Running the Pipeline

Now let’s run our pipeline. json example, using it to translate (page 38) input.las to
output.las.

$ pdal translate input.las output.las —--Jjson pipeline. json

298 Chapter 12. Tutorials

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

B I

12.1. Tutorials 299

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

300 Chapter 12. Tutorials

CHAPTER
THIRTEEN

WORKSHOP

13.1 Point Cloud Processing and Analysis with PDAL

Author Howard Butler
Author Pete Gadomski
Author Dr. Craig Glennie
Author Michael Smith
Author Dr. Adam Steer
Contact howard @hobu.co
Date 08/26/2019

13.1.1 Introduction

R A R

Introduction to LiDAR (page 303)
Introduction to PDAL (page 5)
Software Installation (page 308)
Basic Information (page 309)
Translation (page 315)

Analysis (page 321)
Georeferencing (page 379)

301

mailto:howard@hobu.co

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Materials

Slides

 Slides (https://pdal.s3.amazonaws.com/workshop/slides.zip)

Workshop Materials

These materials are available as a PDF and an HTML website.
* PDF download (https://pdal.s3.amazonaws.com/workshop/PDAL-workshop.pdf)
e HTML (https://pdal.s3.amazonaws.com/workshop/PDAL-workshop-html.zip)

USB Example Data Drive

A companion USB drive containing workshop example data is required to follow along with
these examples.

Note: A drive image is available for download at
https://pdal.s3.amazonaws.com/workshop/PDAL-Workshop-complete.zip

302 Chapter 13. Workshop

https://pdal.s3.amazonaws.com/workshop/slides.zip
https://pdal.s3.amazonaws.com/workshop/PDAL-workshop.pdf
https://pdal.s3.amazonaws.com/workshop/PDAL-workshop-html.zip
https://pdal.s3.amazonaws.com/workshop/PDAL-Workshop-complete.zip

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

13.1.2 Introduction to LiDAR

LiDAR is a remote sensing technique that uses visible or near-infrared laser energy to measure
the distance between a sensor and an object. LiDAR sensors are versatile and (often) mobile;
they help autonomous cars avoid obstacles and make detailed topographic measurements from
space. Before diving into LiDAR data processing, we will spend a bit of time reviewing some
LiDAR fundamentals and discussing some terms of art.

Types of LiDAR

LiDAR systems, generally speaking, come in one of three types:

* Pulse-based, or linear-mode, systems emit a pulse of laser energy and measure the time
it takes for that energy to travel to a target, bounce off the target, and be returned to the
sensor. These systems are called linear-mode because they (generally) only have a single
aperture, and so can only measure distance along a single vector at any point in time.
Pulse-based systems are very common, and are usually what you would think of when
you think of LiDAR.

* Phase-based LiDAR systems measure distance via interferometry, that is, by using the
phase of a modulated laser beam to calculate a distance as a fraction of the modulated
signal’s wavelength. Phase-based systems can be very precise, on the order of a few
millimeters, but since they require comparatively more energy than the other two types
they are usually used for short-range (e.g. indoor) scanning.

* Geiger-mode, or photon-counting, systems use extremely sensitive detectors that can
be triggered by a single photon. Since only a single photon is required to trigger a
measurement, these systems can operate at much much higher altitudes than linear mode
systems. However, Geiger-mode systems are relatively new and suffer from very high
amounts of noise and other operational restrictions, making them significantly less
common than linear-mode systems.

Note: Unless otherwise noted, if we talk about a LiDAR scanner in this program, we will be
referring to a pulse-based (linear) system.

Modes of LiDAR Collection

LiDAR collects are generally categorized into four subjective types:

* Terrestrial LIDAR Scanning (TLS): scanning with a stationary LiDAR sensor, usually
mounted on a tripod.

* Airborne LiDAR scanning (ALS): also called airborne laser swath mapping (ALSM),
scanning with a LIDAR scanner mounted to a fixed-wing or rotor aircraft.

13.1. Point Cloud Processing and Analysis with PDAL 303

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

* Mobile LiDAR scanning (MLS): scanning from a ground-based vehicle, such as a car.
* Unmanned LiDAR scanning (ULS): scanning with drones or other unmanned vehicles.

With the exception of stationary TLS, LiDAR scanning generally requires the use of an
integrated GNSS/IMU (Global Navigation Satellite System/Inertial Motion Unit), which
provides information about the position, rotation, and motion of the scanning platform.

Note: As stated in the class description, we will focus on mobile and airborne laser scanning
(MLS/ALS), though we will also use some TLS data.

Georeferencing

LiDAR scanners collect information in the Scanner’s Own Coordinate System (SOCS); this is
a coordinate system centered at the scanner. The process of rotating, translating, and (possibly)
transforming a point cloud into a real-world spatial reference system is known as
georeferencing.

In the case of TLS, georeferencing is simply a matter of discovering the position and
orientation of the static scanner. This is usually done with GNSS control points, which are used
to solve for the scanner’s position via least-squares.

For mobile or airborne LiDAR scanning, it is necessary to merge the scanner’s points with the
GNSS/IMU data. This can be done on-the-fly or as a part of a post-processing workflow. Since
this is a common operation for mobile and airborne LiDAR collects, we will spend a moment
discussing the methods and complications for georeferencing mobile LiDAR and GNSS/IMU
data.

Integrating LiDAR and GNSS/IMU data

The LiDAR georeferencing equation is well-established; we present a version here from
[GleO7] (page 539):

PL = Plps + Ry (Rir® — 1) (13.1)

where:
* pL, are the coordinates of the target point in the global reference frame
* pL.pg are the coordinates of the GNSS sensor in the global reference frame
« R/ is the rotation matrix from the navigation frame to the global reference frame

R is the rotation matrix from the scanner’s frame to the navigation frame (boresight
matrix)

304 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

* r’ is the coordinates of the laser point in the scanner’s frame
« 1% is the lever-arm offset between the scanner’s original and the navigation’s origin

This equation contains fourteen unknowns, and in order to georeference a single LiDAR return
we must determine all fourteen variables at the time of the pulse.

As a rule of thumb, the position, attitude, and motion of the scanning platform (aircraft,
vehicle, etc) are sampled at a much lower rate than the pulse rate of the laser — rates of ~1Hz
are common for GNSS/IMU sampling. In order to match the GNSS/IMU sampling rate with
the sampling rate of the laser, GNSS/IMU measurements are interpolated to line up with the
LiDAR measurements. Then, these positions and attitudes are combined via Equation (13.1) to
create a final, georeferenced point cloud.

Note: While lever-arm offsets are usually taken from the schematic drawings of the LIDAR
mounting system, the boresight matrix cannot be reliably determined from drawings alone.
The boresight matrix must therefore be determined either via manual or automated boresight
calibration using actual LiDAR data of planar surfaces, such as the roof and sides of buildings.
The process for determining a boresight calibration from LiDAR data is beyond the scope of
this class.

Discrete-Return vs. Full-Waveform

Pulse-based LiDAR systems use the round-trip travel time of a pulse of laser energy to measure
distances. The outgoing pulse of a LIDAR system is roughly (but not exactly) a Gaussian:

This pulse can interact with multiple objects in a scene before it is returned to the sensor. Here
is an example of a LiDAR return:

As you can see, this return pulse can be very complicated. While there is more information
contained in the “full waveform” picture displayed above, many LiDAR consumers are only
interested in detecting the presence or absence of an object — simplistically, the peaks in that
waveform.

Full waveform data is used only in specialized circumstances. If you have or receive LiDAR
data, it will usually be discrete return (point clouds). Processing full waveform data is beyond
the scope of this class.

Note: PDAL is a discrete-return point cloud processing library. It does not have any
functionality to analyse or process full waveform data.

13.1. Point Cloud Processing and Analysis with PDAL 305

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

200 -

150 -

100 -

Intensity

50 -

1.0é-08 1.5é-08 2.0é-08

0.0e+00 5.0e-09
Time from the start of record in seconds

Fig. 13.1: A real-world outgoing LiDAR pulse.

306 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

200 -

Intensity

100~ -

2.5e-08 5.0e-08 7.5e-08 1.0e-07

0.0e+00
Time from the start of record in seconds

Fig. 13.2: A real-world incoming LiDAR return. Potential discrete-return peaks are marked in

red.

13.1. Point Cloud Processing and Analysis with PDAL 307

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

13.1.3 Software Installation

Conda

What is Conda

Conda is an open source package management system and environment management system
that runs on Windows, macOS and Linux. Conda quickly installs, runs and updates packages
and their dependencies. Conda easily creates, saves, loads and switches between environments
on your local computer. It was created for Python programs, but it can package and distribute
software for any language..

How will we use Conda?

PDAL stands on the shoulders of giants. It uses GDAL, GEOS, and many other dependencies
(page 404). Because of this, it is very challenging to build it yourself. We could easily burn an
entire workshop learning the esoteric build mysteries of PDAL and all of its dependencies.
Fortunately, Conda provides us a fully-featured known configuration to run our examples and
exercises without having to suffer so much, and provides it for Windows, Linux, and macOS.

Note: Not everyone uses Conda. Another alternative to get a known configuration is to go
through the workshop using docker as your platform. A previous edition of the workshop was
provided as Docker, but it was found to be a bit too difficult to follow.

Installing Conda

1. Copy the entire contents of your workshop USB key to a PDAL directory in your home
directory (something like C: \Users\hobu\PDAL) or the equivalent for your OS. We
will refer to this location for the rest of the workshop materials.

2. Download the Conda installer for your OS setup.
https://docs.conda.io/en/latest/miniconda.html

3. After installing Conda, create an environment for PDAL with:

conda create —-—name pdalworkshop

4. Then activate the new environment:

conda activate pdalworkshop

5. Install PDAL, Entwine, and GDAL, and install it from conda-forge:

308 Chapter 13. Workshop

https://docs.conda.io/en/latest/miniconda.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

conda install -c¢ conda-forge pdal python-pdal gdal entwine
—matplotlib

13.1.4 Exercises

Basic Information

Printing the first point

Exercise

This exercise uses PDAL to print information from the first point. Issue the following
command in your Conda Shell.

pdal info ./exercises/info/interesting.las -p O

Here’s a summary of what’s going on with that command invocation

1. pdal: The pdal application :)

2. info: We want to run info (page 29) on the data. All commands are run by the pdal
application.

3. ./exercises/info/interesting. las: The file we are running the command
on. PDAL will be able to identify this file is an ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-
Activities.html) file from the extension, . 1as, but not every file type is easily identified.
You can use a pipeline (page 32) to override which reader (page 53) PDAL will use to
open the file.

4. -p 0: —p corresponds to “print a point”, and 0 means to print the first one (computer
people count from 0).

13.1. Point Cloud Processing and Analysis with PDAL 309

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(pdalworkshop) $pdal info ./exercises/info/interesting.las -p @

{

"filename": "./exercises/info/interesting.las",
"pdal_version": "1.9.1 (git-version: Release)",

"points":

{

"point™:

{

}
}
}

"Blue": 88,
"Classification": 1,
"EdgeOfFlightLine": @,
"GpsTime": 245380.7825,
"Green": 77,
"Intensity": 143,
"NumberOfReturns": 1,
"PointId": 0,
"PointSourceld": 7326,
"Red": 68,
"ReturnNumber": 1,
"ScanAngleRank": -9,
"ScanDirectionFlag": 1,
"UserData": 132,

"X": 637012.24,

"Y": 849028.31,

"Z": 431.66

Notes

1. PDAL uses JSON (https://en.wikipedia.org/wiki/JSON) as the exchange format when
printing information from info (page 29). JSON is a structured, human-readable format
that is much simpler than its XML (https://en.wikipedia.org/wiki/XML) cousin.

2. You can use the writers.text (page 136) writer to output point attributes to CSV
(https://en.wikipedia.org/wiki/Comma-separated_values) format for other processing.

3. Output help information on the command line by issuing the ——he1p option

4. A common query with pdal infois ——all, which will print all header, metadata,

Printing file metadata

and statistics about a file.

Exercise

This exercise uses PDAL to print metadata information. Issue the following command in your

Conda Shell.
pdal info ./exercises/info/interesting.las ——metadata
310 Chapter 13. Workshop

../../../_images/info-interesting-single-point.png
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Comma-separated_values

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(pdalworkshop) $ pdal info ./exercises/info/interesting.las --metadata
4

"filename": "./exercises/info/interesting.las",

"metadata" :

{

"comp_spatialreference"”: "PROJCS[\"NAD_1983_Oregon_Statewide_Lambert_Feet_Int1\",GEOGCS[\"GCS_North_American_1983\",DATUM[\"D_North_American_1983\",SPHEROID
[\"GRS_1980\",6378137,298.257222101]] , PRIMEM[\"Greenwich\",@] ,UNIT[\"degree\",0.0174532925199433]],PROJECTION[\"Lambert_Conformal_Conic_2SP\"],PARAMETER[\"stand
ard_parallel_1\",43],PARAMETER[\"standard_parallel_2\",45.5],PARAMETER[\"latitude_of_origin\",41.75],PARAMETER[\"central_meridian\",-120.5],PARAMETER[\"false_ea
sting\",400000] ,PARAMETER[\"false_northing\",@],UNIT[\"foot\",@.3048,AUTHORITY[\"EPSG\",\"9002\"]1]",

"compressed": false,

"count": 1065,

"creation_doy": 145,

"creation_year": 2012,

"dataformat_id": 3,

"dataoffset": 1488,

"filesource_id": 0,

"global_encoding": @,

"global_encoding_base64": "AAA=",

"header_size": 227,

"major_version": 1,

"maxx": 638982.55,

"maxy": 853535.43,

"maxz": 586.38,

"minor_version": 2,

"minx": 635619.85,

"miny": 848899.7,

"minz": 406.59,

"offset_x": 0,

"offset_y": 0,

"offset_z": 0,

"point_length": 34,

"project_id": 0000-0000-0000

"scale_x": 0.010000000000000000208,

"scale_y": 0.010000000000000000208,

"scale_z": 0.010000000000000000208,

"software_id": "HOBU-GENERATING",

Note: PDAL meradata (page 414) is returned a in a tree structure corresponding to processing
pipeline that produced it.

See also:

Use the JSON (https://en.wikipedia.org/wiki/JSON) processing capabilities of your favorite
processing software to selectively access and manipulate values.

e Python JSON library (https://docs.python.org/2/library/json.html)

* jsawk (https://github.com/micha/jsawk) (like awk but for JSON data)

* jq (https://stedolan.github.io/jq/) (command line processor for JSON)

e Ruby JSON library (http://ruby-doc.org/stdlib-2.0.0/libdoc/json/rdoc/JSON.html)

Structured Metadata Output

Many command-line utilities output their data in a human-readable custom format. The
downsides to this approach are significant. PDAL was designed to be used in the context of
other software tools driving it. For example, it is quite common for PDAL to be used in data
validation scenarios. Other programs might need to inspect information in PDAL’s output and
then act based on the values. A human-readable format would mean that downstream program
would need to write a parser to consume PDAL'’s special format.

JSON (https://en.wikipedia.org/wiki/JSON) provides a nice balance between human- and
machine- readable, but even then it can be quite hard to find what you’re looking for, especially

13.1. Point Cloud Processing and Analysis with PDAL 311

https://en.wikipedia.org/wiki/JSON
https://docs.python.org/2/library/json.html
https://github.com/micha/jsawk
https://stedolan.github.io/jq/
http://ruby-doc.org/stdlib-2.0.0/libdoc/json/rdoc/JSON.html
https://en.wikipedia.org/wiki/JSON

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

if the output is long. pdal command output used in conjunction with a JSON parsing tool like
jg provide a powerful inspection combination.

For example, we might only care about the system_id and compressed flag for this
particular file. Our simple pdal info --metadata command gives us that, but it also
gives us a bunch of other stuff we don’t need at the moment either. Let’s focus on extracting
what we want using the jg command.

pdal info ./exercises/info/interesting.las —--metadata \
| jg ".metadata.compressed, .metadata.system id"

A

pdal info ./exercises/info/interesting.las —-metadata
| jJg ".metadata.compressed, .metadata.system_id"

(pdalworkshop) $ pdal info ./exercises/info/interesting.las --metadata | jgq ".metadata.compressed, .metadata.system_id"
false

"HOBU-SYSTEMID"

(pdalworkshop) $

Note: PDAL’s JSON output is very powerfully combined with the processing capabilities of
other programming languages such as JavaScript or Python. Both of these languages have
excellent built-in tools for consuming JSON, along with plenty of other features to allow you
to do something with the data inside the data structures. As we will see later in the workshop,
this PDAL feature is one that makes construction of custom data processing workflows with
PDAL very convenient.

Notes

1. PDAL uses JSON (https://en.wikipedia.org/wiki/JSON) as the exchange format when
printing information from info (page 29). JSON provides human and machine-readable
text data.

2. The PDAL metadata document (page 414) contains background and information about
specific metadata entries and what they mean.

3. Metadata available for a given file depends on the stage that produces the data. Readers
(page 53) produce same-named values where possible, but it is common that variables
are different. Filters (page 140) and even writers (page 107) can also produce metadata
entries.

4. Spatial reference system or coordinate system information is a kind of special metadata.
Spatial references are come directly from source data or are provided via options in
PDAL.

312 Chapter 13. Workshop

https://en.wikipedia.org/wiki/JSON

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Searching near a point
Exercise

This exercise uses PDAL to find points near a given search location. Our scenario is a simple
one — we want to find the two points nearest the midpoint of the bounding cube of our
interesting. las data file.

First we need to find the midpoint of the bounding cube. To do that, we need to print the
——all info for the file and look for the bbox output:

pdal info ./exercises/info/interesting.las —--all | jg .stats.bbox.
—native.bbox

(pdalworkshop) $pdal info ./exercises/info/interesting.las --all | jq .stats.bbox.native.bbox
{

: 638982.55,

: 853535.43,

S5 S G R

: 635619.85,

1 848899.7,

: 406.59

1
(pdalworkshop) $

Find the average the X, Y, and Z values:

x = 635619.85 + (638982.55 - 635619.85)/2 = 637301.20
y = 848899.70 + (853535.43 - 848899.70)/2 = 851217.57
z = 406.59 + (586.38 - 406.59)/2 = 496.49

With our “center point”, issue the ——query option to pdal info and return the three
nearest points to it:

pdal info ./exercises/info/interesting.las ——query "637301.20
—~851217.57, 496.49/3"

L

Note: The /3 portion of our query string tells the query command to give us the 3 nearest
points. Adjust this value to return data in closest-distance ordering.

13.1. Point Cloud Processing and Analysis with PDAL 313

../../../_images/info-near-bbox.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(pdalworkshop) $ pdal info ./exercises/info/interesting.las --query "637301.20, 851217.57, 496.49/3"
{

"filename": "./exercises/info/interesting.las",
"pdal_version": "1.9.1 (git-version: Release)",
"points":
i

"point":

C

il
"Blue": 221,

"Classification": 1,
"EdgeOfFlightLine": @,
"GpsTime": 247565.2203,
"Green": 211,
"Intensity": 169,
"NumberOfReturns”: 1
"PointId": 762,
"PointSourceId": 7330,
"Red": 228,
"ReturnNumber": 1,
"ScanAngleRank": -4,
"ScanDirectionFlag": @,
"UserData": 124,

"X": 637323.56,

"Y": 851555.64,

"Z": 586.38

)

"Blue": 243,
"Classification": 1,
"EdgeOfFlightLine": @,
"GpsTime": 247564.4991,
"Green": 234,
"Intensity": 249,
"NumberOfReturns": 1,
"PointId": 757,
"PointSourceld": 7330,
"Red": 241,
"ReturnNumber": 1,
"ScanAngleRank": -8,
"ScanDirectionFlag": 1,
"UserData": 128,

Notes

1. PDAL uses JSON (https://en.wikipedia.org/wiki/JSON) as the exchange format when
printing information from info (page 29). JSON is a structured, human-readable format
that is much simpler than its XML (https://en.wikipedia.org/wiki/XML) cousin.

2. The ——query option of info (page 29) constructs a KD-tree
(https://en.wikipedia.org/wiki/K-d_tree) of the entire set of points in memory. If you
have really large data sets, this isn’t going to work so well, and you will need to come up
with a different solution.

314 Chapter 13. Workshop

../../../_images/info-near-point.png
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/K-d_tree

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Translation

Compression

Exercise

This exercise uses PDAL to compress ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data into LASzip (http://laszip.org).

1. Issue the following command in your Conda Shell.

pdal translate ./exercises/translation/interesting.laz \

./exercises/translation/interesting.las

pdal translate ./exercises/translation/interesting.laz *

./exercises/translation/interesting.las

LAS is a very fluffy binary format. Because of the way the data are stored,
there is ample redundant information, and LASzip (http://laszip.org) is an
open source solution for compressing this information. Note that we are
actually inflating the data here. Its laz from the workshop and we are

converting it to las.

2. Verify that the laz data is compressed over the las:

ls —alh ./exercises/translation/interesting.laz

ls —alh ./exercises/translation/interesting.las

dir ./exercises/translation/interesting.

dir ./exercises/translation/interesting.

(pdall9) C:\>dir C:\Users\hobu\PDAL\exercises\info\interesting.laz
Volume in drive C has no label.
Volume Serial Number is 162A-5F2D

Directory of C:\Users\hobu\PDAL\exercises\info

68/04/2019 ©5:12 PM 18,786 interesting.laz
1 File(s) 18,786 bytes
@ Dir(s) 11,142,668,288 bytes free

(pdal19) C:\>dir C:\Users\hobu\PDAL\exercises\info\interesting.las
Volume in drive C has no label.
Volume Serial Number is 162A-5F2D

Directory of C:\Users\hobu\PDAL\exercises\info
08/04/2019 ©2:44 PM 37,698 interesting.las

1 File(s) 37,698 bytes
@ Dir(s) 11,142,668,288 bytes free

{ndal1a) C-\>

laz

las

13.1.

Point Cloud Processing and Analysis with PDAL

315

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
http://laszip.org
../../../_images/compression-verify.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

See also:

LAS Reading and Writing with PDAL (page 277) contains many pointers about settings for
ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data and how to achieve specific data behaviors with PDAL.

Notes

1. Typical LASzip (http://laszip.org) compression is 5:1 to 8:1, depending on the type of
LiDAR (https://en.wikipedia.org/wiki/Lidar). It is a compression format specifically for
the ASPRS LAS (http://www.asprs.org/Committee-General/LASer-LLAS-File-Format-
Exchange-Activities.html) model, however, and will not be as efficient for other types of
point cloud data.

2. You can open and view LAZ data in web browsers using http://plas.io

Reprojection
Exercise

This exercise uses PDAL to reproject ASPRS LAS
(http://www.asprs.org/Committee-General/LLASer-LAS-File-Format-Exchange-Activities.html)
data

Issue the following command in your Conda Shell:

pdal translate ./exercises/analysis/ground/CSitel_orig-utm.laz \
./exercises/translation/csite-dd.laz reprojection \
——filters.reprojection.out_srs="EPSG:4326"

A

pdal translate ./exercises/analysis/ground/CSitel_orig-utm.laz
./exercises/translation/csite-dd.laz reprojection *
——filters.reprojection.out_srs="EPSG:4326"

(pdalworkshop) C:\»pdal translate c:/Users/hobu/PDAL/exercises/analysis/ground/CSitel_orig-utm.laz ~

More? c:/Users/hobu/PDAL/exercises/translation/csite-dd.laz ~
More? reprojection *
More? --filters.reprojection.out_srs="EP5G:4326"

(pdalworkshop) C:\>g
Unfortunately this doesn’t produce the intended results for us. Issue the following pdal
info command to see why:

pdal info ./exercises/translation/csite-dd.laz —--all \
| jg .stats.bbox.native.bbox

316 Chapter 13. Workshop

http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://laszip.org
https://en.wikipedia.org/wiki/Lidar
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://plas.io
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
../../../_images/reprojection-run-command.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

A

pdal info ./exercises/translation/csite-dd.laz —-all
| Jg .stats.bbox.native.bbox

(pdalworkshop) C:\»pdal info c:/Users/hobu/PDAL/exercises/translation/csite-dd.laz --all | jq .stats.bbox.native.bbox
"maxx": 9.18,
"maxy": 48.79,
"maxz": 426.91,
"minx": 9.16,
"miny": 48.78,
"minz": 99.43
}

——all dumps all info (page 29) information about the file, and we can then use the jq

(https://stedolan.github.i0/jq/) command to extract out the “native” (same coordinate system as
the file itself) bounding box. As we can see, the problem is we only have two decimal places of
precision on the bounding box. For geographic coordinate systems, this isn’t enough precision.

Printing the first point confirms this problem:
(pdalworkshop) C:\»pdal info c:/Users/hobu/PDAL/exercises/translation/csite-dd.laz -p @

"filename": "c:/Users/hobu/PDAL/exercises/translation/csite-dd.laz",
"pdal_version": "1.9.1 (git-version: Release)",
"points":
{
"point":
{
"Blue™: @,

"Classification™: @,
"EdgeOfFlightLine": &,
"GpsTime": 8,

"Green": @,
"Intensity": 1@,
"NumberOfReturns™: 2,
"PointId": @,
"PointSourceld": 8,
"Red": @,
"ReturniNumber™: 1,
"ScanAngleRank": @,
"ScanDirectionFlag": @,
"UserData™: @,

"X": 9,17,
"y 48.78,
"Z": 316.88

by
3
h

Some formats, like writers.las (page 117) do not automatically set scaling information. PDAL
cannot really do this for you because there are a number of ways to trip up. For
latitude/longitude data, you will need to set the scale to smaller values like 0.0000001.
Additionally, LAS uses an offset value to move the origin of the value. Use PDAL to set that to
auto so you don’t have to compute it.

pdal translate \
./exercises/analysis/ground/CSitel_orig-utm.laz \
./exercises/translation/csite-dd.laz reprojection \
—-—filters.reprojection.out_srs="EPSG:4326" \
——writers.las.scale x=0.0000001 \
—--writers.las.scale_y=0.0000001 \
——writers.las.offset_x="auto" \

13.1. Point Cloud Processing and Analysis with PDAL 317

../../../_images/reprojection-wrong-scale.png
https://stedolan.github.io/jq/
../../../_images/reprojection-first-point.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

——writers.las.offset_y="auto"

pdal translate
./exercises/analysis/ground/CSitel_orig-utm.laz

A

A

./exercises/translation/csite-dd.laz reprojection *

——filters
—-—writers
——writers.
—-—writers.
——writers.

.las.

las

.reprojection.out_srs="EPSG:4326" ~

scale_x=0.0000001 ~

.scale_y=0.0000001 ~
las.
las.

offset_x="auto" *
offset_y="auto"

(pdalworkshop) $pdal translate \

> ./exercises/analysis/ground/CSitel_orig-utm.laz \

> ./exercises/translation/csite-dd.laz reprojection \
> —-filters.reprojection.out_srs="EPSG:4326" \
scale_x=0.0000001 \

scale_y=0.0000001 \

offset_x="auto" \

offset_y="auto"

> --writers.las.
> --writers.las.
> --writers.las.
> --writers.las.
(pdal translate
(pdal translate

writers.las Warning) Auto offset for Xrequested in stream mode.
writers.las Warning) Auto offset for Yrequested in stream mode.

(pdalworkshop) $

Using value of 9.16789.
Using value of 48.7835.

Run the pdal info command again to verify the X, Y, and Z dimensions:
(pdalworkshop) $pdal info ./exercises/translation/csite-dd.laz --all \
> | jg .stats.bbox.native.bbox

i

: 9.179032939,
- 4878976523,
. 426.91,
: 9.164037839,
. 48.78345443
- 99.43

}
(pdalworkshop)

Notes

$

1. filters.reprojection (page 197) will use whatever coordinate system is defined by the
point cloud file, but you can override it using the in_srs option. This is useful in
situations where the coordinate system is not correct, not completely specified, or your
system doesn’t have all of the required supporting coordinate system dictionaries.

2. PDAL uses Proj.4 (http://proj4.org) library for reprojection. This library includes the
capability to do both vertical and horizontal datum transformations.

318

Chapter 13. Workshop

../../../_images/reprojection-run-with-scale.png
../../../_images/reprojection-proper-scale.png
http://proj4.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Entwine
Exercise

This exercise uses PDAL to fetch data from an Entwine index stored in an Amazon Web
Services object store (bucket). Entwine is a point cloud indexing strategy, which rearranges
points into a lossless octree structure known as EPT, for Entwine Point Tiles. The structure is
described here: https://entwine.io/entwine-point-tile.html.

EPT indexes can be used for visualisation as well as analysis and data manipulation at any
scale.

Examples of Entwine usage can be found from very fine photogrammetric surveys to
continental scale lidar management.

US Geological Survey (USGS) example data is here: https://usgs.entwine.io/

We will use a sample data set from Dublin, Ireland
http://potree.entwine.io/data/view.html?r=%?22http://na-c.entwine.io/dublin/ept.json %22

1. View the entwine. json file in your editor. If the file does not exist, create it and
paste the following JSON into it:

{
"pipeline": |
{
"type": "readers.ept",
"filename":"https://na-c.entwine.io/dublin/",
"resolution": 5

"type": "writers.las",
"compression": "true",
"minor_version": "2",
"dataformat_id": "O",
"filename":"dublin.laz"

Note: If you use the Developer Console
(https://developers.google.com/web/tools/chrome-devtools/console/) when
visiting http://speck.ly or http://potree.entwine.io, you can see the browser
making requests against the EPT resource at
http://na-c.entwine.io/dublin/ept.json

13.1. Point Cloud Processing and Analysis with PDAL 319

https://entwine.io/entwine-point-tile.html
https://usgs.entwine.io/
http://potree.entwine.io/data/view.html?r=%22http://na-c.entwine.io/dublin/ept.json%22
https://developers.google.com/web/tools/chrome-devtools/console/
http://speck.ly
http://potree.entwine.io
http://na-c.entwine.io/dublin/ept.json

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

2. Issue the following command in your Conda Shell.

pdal pipeline ./excercises/translation/entwine.json -v 7

(pdal19) C:\Users\hobu\PDAL\exercises\translation>pdal pipeline entwine.json -v 7

(PDAL Debug) Debugging...

(pdal pipeline readers.ept Debug) GDAL debug: OGRSpatialReference::Validate: No root pointer.

(pdal pipeline readers.ept Debug) GDAL debug: OGRSpatialReference::Validate: No root pointer.

(pdal pipeline readers.ept Debug) GDAL debug: OGRSpatialReference::Validate: No root pointer.

(pdal pipeline readers.ept Debug) Endpoint: https://na-c.entwine.io/dublin/

Got EPT info

SRS: PROJICS["WGS 84 / Pseudo-Mercator",GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,AUTHORITY["EP

SG","7030"]],AUTHORITY["EPSG", "6326"]], PRIMEM["Greenwich",@,AUTHORITY["EPSG", "8901"]],UNIT["degree",0.0174532925199433, AUTHOR

ITY["EPSG","9122"]],AUTHORITY["EPSG", “4326"]],PROJECTION["Mercator_1SP"],PARAMETER[“central_meridian",@],PARAMETER["scale_fac

tor",1],PARAMETER["false_easting”,0],PARAMETER["false_northing",0],UNIT["metre",1,AUTHORITY["EPSG","9001"]],AXIS["X",EAST],AX

IS["Y",NORTH],EXTENSION[“PROJ4","+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.8 +y_0=0 +k=1.0 +units=m +nad

grids=@null +wktext +no_defs"],AUTHORITY["EPSG","3857"]]

Root resolution: 21.3828

Query resolution: 5

Actual resolution: 2.67285

Depth end: 4

Query bounds: ([-1.797693134862316e+308, 1.797693134862316e+308], [-1.797693134862316e+308, 1.797693134862316e+308], [-1.7976

93134862316e+308, 1.797693134862316e+308])

Threads: 4

(pdal pipeline readers.ept Debug) Registering dim X: double

(pdal pipeline readers.ept Debug) Registering dim Y: double

(pdal pipeline readers.ept Debug) Registering dim Z: double

(pdal pipeline readers.ept Debug) Registering dim Intensity: uinti16_t

(pdal pipeline readers.ept Debug) Registering dim ReturnNumber: uint8_t

(pdal pipeline readers.ept Debug) Registering dim NumberOfReturns: uint8_t

(pdal pipeline readers.ept Debug) Registering dim ScanDirectionFlag: uint8_t

(pdal pipeline readers.ept Debug) Registering dim EdgeOfFlightLine: uint8_t

(pdal pipeline readers.ept Debug) Registering dim Classification: uint8_t

(pdal pipeline readers.ept Debug) Registering dim ScanAngleRank: float

(pdal pipeline readers.ept Debug) Registering dim UserData: uint8_t

(pdal pipeline readers.ept Debug) Registering dim PointSourceId: uint16_t

(pdal pipeline readers.ept Debug) Registering dim GpsTime: double

(pdal pipeline readers.ept Debug) Registering dim OriginId: uint32_t

(pdal pipeline Debug) Executing pipeline in standard mode.

(pdal pipeline readers.ept Debug) Overlap nodes: 78

(pdal pipeline readers.ept Debug) Overlap points: 8034506

(pdal pipeline readers.ept Debug) Data 1/78: @-

(pdal pipeline readers.ept Debug) Data 2/78: 1

(pdal pipeline readers.ept Debug) Data 3/78: 1

(pdal pipeline readers.ept Debug) Data 4/78: 1-
1
1

(pdal pipeline readers.ept Debug) Data 5/78:
(pdal pipeline readers.ept Debug) Data 6/78:

3. Verify that the data look ok:

pdal info dublin.laz | Jjg .stats.bbox.native.bbox

pdal info dublin.laz -p O

(pdal19) C:\Users\hobu\PDAL\exercises\translation>pdal info dublin.laz | jq .stats.bbox.native.bbox
{

"maxx": -694128.96,
"maxy": 7049938.84,
"maxz": 385.37,
"minx": -699477.88,
"miny": 7044490.98,
"minz": -144.24

i
(pdal19) C:\Users\hobu\PDAL\exercises\translation>pdal info dublin.laz -p @
“filename": "dublin.laz",
“pdal_version": "1.9.1 (git-version: Release)",
"points":
"point":
"Classification": 4,

"EdgeOfFlightLine": @,
"Intensity": 7,
“NumberOfReturns”: 2,
"PointId": @,
"PointSourceId": o,

"ScanAngleRank": -33,
"ScanDirectionFlag": 1,
"UserData": @,
-697907.12,
7045474 .25,

27.5

320 Chapter 13. Workshop

../../../_images/entwine-command.png
../../../_images/entwine-info-verify.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

4. Visualize the data in http://plas.io

ZEXAGGERATION

COLORIZATION

COLORMAP

INTENSITY SOURCE

Heightmap Grayscale v

INTENSITY BLENDING

Notes

1. readers.ept (page 55) contains more detailed documentation about how to use PDAL’s
EPT reader .

Analysis

Finding the boundary

This exercise uses PDAL to find a tight-fitting boundary of an aerial scan. Printing the
coordinates of the boundary for the file is quite simple using a single pdal info call, but
visualizing the boundary is more complicated. To complete this exercise, we are going to use
qgis to view the boundary, which means we must first install it on our system.

Exercise

Note: We are going to run using the Uncompahgre data in the . /density directory.

pdal info ./exercises/analysis/density/uncompahgre.laz —-boundary

13.1. Point Cloud Processing and Analysis with PDAL 321

http://plas.io
../../../_images/entwine-view.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

B Administrator: Anaconda Prompt (Miniconda3) - "C:\ProgramData\Miniconda3\condabin\conda.bat" activate pdal19 - a X

(pdal19) C:\>pdal info ~ A
fore? c:/Users/hobu/PDAL/exercises/analysis/density/uncompahgre.laz ~
fore? --boundary

"boundary”:
{

"area": 90179889.42,

"avg_pt_per_sq_unit": 20.23338738,

"avg_pt_spacing": 2.576586467,

"boundary": "MULTIPOLYGON (((245561.32 4208409.0,245731.84 4208556.7,246072.88 4208409.0,246371.29 4208630.5,246584.
44 4208556.7,246882.84 4208778.2,2470695.99 4208704.4,247394.4 42068925.9,247607.55 42088852.0,247778.07 4208999.7,247991.2
2 4208925.9,248161.73 42089073.6,248374.88 4208999.7,248545.4 4209147.4,248758.55 4209673.6,248929.07 4209221.2,249184.85

4209221.2,249184.85 4209516.6,249014.33 4269664.2,249184.85 4209811.9,249014.33 42106107.3,248673.29 4210254.9,248801.18
42106476.5,248502.77 4210698.0,248673.29 4216993.3,248502.77 4211141.0,248502.77 4211731.7,248673.29 4212027.0,248502.77
4212174.7,248545.4 4212543.9,248374.88 4212691.6,248417.51 4213268.4,248119.11 4213429.9,248289.62 4213725.3,247991.22
4213799.1,248119.11 4214168.3,247735.44 4214242.1,2479065.96 4214537.5,247479.66 4215275.8,247522.29 4215497.4,247223.88
4215718.9,247394.4 4215866.5,247095.99 4216235.7,247138.62 4216457.2,246840.21 4216974.1,246882.84 4217195.6,246712.33 4
217343.3,246754.95 4217712.5,246584.44 4217860.1,246754.95 4218007.8,246499.18 4218007.8,246627.067 4218377.0,246328.66 4
218450.8,246499.18 4218598.5,246328.66 4218746.2,246499.18 4219041.5,246243.4 4219041.5,246243.4 4219336.9,246072.88 421
9484.5,246243.4 4219779.9,245944.99 4219853.7,245987.62 4220075.2,245817.1 4220222.9,245859.73 4220592.1,245689.21 42207
39.8,245731.84 4220961.3,245177.66 4221773.5,245220.29 4222142.7,245049.77 4222290.3,245092.4 4222511.9,244793.99 422302
@.7,244836.62 4223397.9,244538.21 4223767.1,244452.95 4224653.1,244154.54 4224874.6,244325.66 4225622.3,244026.65 422539
F.5,244069.28 4225760.7,243776.88 4226129.9,243770.88 4226425.2,243515.1 4226572.9,243685.62 4226868.2,243515.1 4227163.
6,243003.54 4227458.9,242747.76 4227311.2,242491.99 4227458.9,242662.5 4227606.6,243131.43 4227532.8,243301.95 4227680.4
,242875.65 4227975.8,242918.28 4228640.3,242662.5 4228788.0,242619.87 4229157.2,242364.1 4229009.5,241895.17 4229683.3,2
41724.65 4228935.7,241255.72 4229009.5,241685.21 4228861.8,240616.28 4228935.7,240445.76 4228788.0,239593.17 4228788.0,2
39550.54 4228566.5,239294.76 4228714.1,238953.72 4228714.1,238783.2 4228566.5,238314.28 42286460.3,238058.5 4228492.6,238
©15.87 4228123.4,238442.16 4227828.1,238911.09 4228197.3,238953.72 4228566.5,239337.39 4228492.6,239081.61 4228345.0,239
©81.61 4228197.3,239422.65 4228197.3,239721.066 4228418.8,240189.98 4228197.3,240189.98 42280649.6,239934.2 4228049.6,2402
32.61 4227828.1,239934.2 4227606.6,240232.61 4227385.1,240360.5 4227458.9,240317.87 4227680.4,240488.39 4227975.8,240744 v

... a giant blizzard of coordinate output scrolls across our terminal. Not very useful.

Instead, let’s generate some kind of vector output we can visualize with qgis. The pdal
tindex is the “tile index” command, and it outputs a vector geometry file for each point
cloud file it reads. It generates this boundary using the same mechanism we invoked above —
filters.hexbin (page 231). We can leverage this capability to output a contiguous boundary of
the uncompahgre. laz file.

pdal tindex create —-tindex ./exercises/analysis/boundary/boundary.
—sqglite \

——filespec ./exercises/analysis/density/uncompahgre.laz \

—-f SQLite

pdal tindex create —-tindex ./exercises/analysis/boundary/boundary.
—sglite ©
—-—filespec ./exercises/analysis/density/uncompahgre.laz *

—-f SQLite

(pdalworkshop) $ pdal tindex create --tindex ./exercises/analysis/boundary/boundary.sqlite \
> --filespec ./exercises/analysis/density/uncompahgre.laz \

> -f SQLite

(pdalworkshop) F%

Once we’ve run the findex (page 37), we can now visualize our output:

Open qgis and select Add Vector Layer:

322 Chapter 13. Workshop

../../../../_images/boundary-text-output.png
../../../../_images/boundary-tindex-run.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Ctrl+5hift+v

Ctrl+5hift+R
Ctrl+5hift+D
Ctrl+Shift-+.

Ctrl+Shift-+M
Ctrl+5hift+0
Ctrl+Shift+w

/ QGIS 2.14.0-Essen
Project Edit View |Layer | Settings FPlugine Vector Raster Database Web Processing Help
D o Create Layer
= el Add Layer
7/ r\g Embed Layers and GF?HDS. 'ﬂ Add Raster Layer. .
L Add from Layer Definition File... 'u Add PostGIS Layers...
Copy style /£, Add Spatialite Layer...
Y O g Yl Pastestye B Add MSSQL Spatial Layer...
' Open Attribute Table @, Add Orade Spatial Layer...
a Home ' Toagle Editin
Favo| ag g. €% Add WMSWMTS Layer...
'ﬂ a:f |En Savelayer Edits &9, Add Oradle GeoRaster Layer...
C:/ | & Current Edits 3 % Add WCS Layer...
o .D.{ Save As... &7 Add WFsS Layer..
R Save As Layer Definition File... ,u Add Delimited Text Layer...
) |1 Remove Layer [Group Ctrl+D m Add Virtual Layer...
% ‘m . '1 L] Duplicate Layer(s)
Set Scale Visibility of Layer(s)
% Set CRS of Layer(s) Ctrl45hift+C
@ Set Project CRS from Layer
Properties...
% Filter... Ctrl+F
- =4 | gbeling
@ 2 Add to Overview
Start
9 i T2 Add Al to Overview
a n-g Remove All from Overview
Vi Stop ® Show All Layers Ctrl+Shift+U
53
V, “ Hide All Layers Ctrl+5hift+H
hd
] L #- Show Selected Layers
Criterion
i] “ Hide Selected Layers
S0 | Length
| Time
—F
(xtﬂ Calculate Export Clear
:: Help
¥
Coordinate . 234116,4220769 Scale | 1:140,292 ¥ Rotaton 0.0

[

be

% Render

epscinoz @ 4

Navigate to the exercises/analysis/boundary directory and then open the
boundary.sqglite file:

13.1. Point Cloud Processing and Analysis with PDAL

323

../../../../_images/density-add-layer.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

QGIS 2.14.0-Essen — O >

Project Edit View Layer Settings Plugine Vector Raster Database Web Processing Help

DEBRLREOIPLLAHPPDPILAR @6 -IN-& »
¥ J B R - &xT < g e [y sy o g @y @ e A Vg

Browser Panel
QRY ®*O
Home
' -1 Favourites
B |8] A
B oy
D:/ @
... et
Layers Panel

M ® T &~ i O

% || boundary uncom re Polygon

HSHDDBIN

Shortest path
Start
%
=
¥ 7 *
Criterion Length -
= :
S0 | Length
| Time
—
(ah Calculate Export Clear
:: Help
¥
] -
Coordinate . 239254,4227505 Scale 147,483,648 * Rotation 0.0 = % Render @EPSG:‘}SZG Q /4
Notes

1. The PDAL boundary computation is an approximation based on a hexagon tessellation.
It uses the software at http://github.com/hobu/hexer to do this task.

2. filters.hexbin (page 231) can also be used by the density (page 27) to generate a
tessellated surface. See the Visualizing acquisition density (page 338) example for steps
to achieve this.

3. The tindex (page 37) can be used to generate boundaries for large collections of data. A
boundary-based indexing scheme is commonly used in LiDAR processing, and PDAL
supports it through the t index application. You can also use this command to merge
data together (query across boundaries, for example).

Clipping data with polygons

This exercise uses PDAL to apply to clip data with polygon geometries.

324 Chapter 13. Workshop

../../../../_images/boundary-qgis-view.png
http://github.com/hobu/hexer

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: This exercise is an adaption of the PDAL tutorial (page 288).

Exercise

The autzen. laz file is a staple in PDAL and libLAS examples. We will use this file to
demonstrate clipping points with a geometry. We’re going to clip out the stadium into a new
LAS file.

| FugroViewer — %
File Settings POl A0l Window Help

i M| [E =52 N 2] ofq 2t 0= 2. 8l
o = [® [%= | | boautzendaz - 30 =N R ==
&2 @al 18

>

Z00M 1% 639924.62 852838.62 v _ -
< > NAV 344.00 30.00 1864.53 1.0

Data preparation

The data are mixed in two different coordinate systems. The LAZ (page 69) file is in Oregon
State Plane Ft.
(http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx) and
the GeoJSON (http://geojson.org) defining the polygons, att ributes. json,isin
EPSG:4326 (http://epsg.i0/4326). We have two options — project the point cloud into the
coordinate system of the attribute polygons, or project the attribute polygons into the
coordinate system of the points. The latter is preferable in this case because it will be less math
and therefore less computation. To make it convenient, we can utilize OGR
(http://www.gdal.org)’s VRT (http://www.gdal.org/drv_vrt.html) capability to reproject the
data for us on-the-fly:

13.1. Point Cloud Processing and Analysis with PDAL 325

../../../../_images/clipping-autzen-view.png
http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx
http://www.oregon.gov/DAS/CIO/GEO/pages/coordination/projections/projections.aspx
http://geojson.org
http://epsg.io/4326
http://www.gdal.org
http://www.gdal.org/drv_vrt.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

<OGRVRTDataSource>
<OGRVRTWarpedLayer>
<OGRVRTLayer name="OGRGeoJSON">
<SrcDataSource>./exercises/analysis/clipping/attributes.
—Jjson</SrcDataSource>
<SrclLayer>attributes</SrcLayer>
<LayerSRS>EPSG:4326</LayerSRS>
</OGRVRTLayer>
<TargetSRS>+proj=lcc +lat_1=43 +lat_2=45.5 +lat_0=41.75 +lon_
—0=-120.5 +x_0=399999.9999999999 +y_0=0 +ellps=GRS80 +units=ft +no_
—defs</Target SRS>
</OGRVRTWarpedLayer>
</OGRVRTDataSource>

Note: This VRT file is available in your workshop materials in the
./exercises/analysis/clipping/attributes.vrt file. You will need to open
this file, go to line 4 and replace . / with the correct path for your machine.

A GDAL or OGR VRT is a kind of “virtual” data source definition type that combines a
definition of data and a processing operation into a single, readable data stream.

326 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

7/ QGIS 2,14.0-Essen — O X

Project Edit View Layer Settings Plugine Vector Raster Database Web Processing Help

DeEBROR (2L RPPRAAR @& N-&- -

P /BR-RBaE=<00 "sma9sss B A%
Browser Panel
ORT®O

: Home
' Favourites

Af
- C:f
[dev E
I £NE Camae

Layers Pansl

o e T s~ 70

HHDBINANMS

%

vl 163

o | o

L] Lengﬂq[]

—(lj— TII'|'|E[]

" | [ctdete_] [_Ewot] [_cex]

il e - ,

2 % Render @Derscizenn o) @

Pana
Coordinate | 494433,4873231 % Scale | 1:5,184 Rotation | 0.0

A

Note: The GeoJSON file does not have an externally-defined coordinate system, so we are
explictly setting one with the LayerSRS parameter. If your data does have coordinate system
information, you don’t need to do that. See the OGR VRT documentation
(http://www.gdal.org/drv_vrt.html) for more details.

Pipeline breakdown

"pipeline": [
"./exercises/analysis/clipping/autzen.laz",

{

"column": "CLS",

"datasource": "./exercises/analysis/clipping/attributes.
svrt",

"dimension": "Classification",

13.1. Point Cloud Processing and Analysis with PDAL 327

../../../../_images/clipping-view-polygons.png
http://www.gdal.org/drv_vrt.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"layer": "OGRGeoJSON",
"type": "filters.overlay"
bo
{
"limits": "Classification[6:6]",
"type": "filters.range"

by

"./exercises/analysis/clipping/stadium.las"

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/clipping/clipping. json file. Remember to replace
each of the three occurrences of . / in this file with the correct location for your machine.

1. Reader

autzen.laz is the LASzip (http://laszip.org) file we will clip.

2. filters.overlay

The filters.overlay (page 178) filter allows you to assign values for coincident polygons. Using
the VRT we defined in Data preparation (page 325), filters.overlay (page 178) will assign the
values from the CLS column to the Classification field.

3. filters.range

The attributes in the attributes. json file include polygons with values 2, 5, and 6. We
will use filters.range (page 214) to keep points with Classification values in the range of
6:6.

4. Writer

We will write our content back out using a writers.las (page 117).

Execution

Invoke the following command, substituting accordingly, in your Conda Shell:

328 Chapter 13. Workshop

http://laszip.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

The —nostream option disables stream mode. The point-in-polygon check (see notes) performs
poorly in stream mode currently.

pdal pipeline ./exercises/analysis/clipping/clipping.json ——-nostream

(pdalworkshop) C:\»pdal pipeline *
More? c:/Users/hobu/PDAL/exercises/analysis/clipping/clipping.json --nostream

(pdalworkshop) C:\>

Visualization

Use one of the point cloud visualization tools you installed to take a look at your
./exercises/analysis/clipping/stadium. las output. In the example below,
we opened the file to view it using the http://plas.io website.

13.1. Point Cloud Processing and Analysis with PDAL 329

../../../../_images/clipping-run-command.png
http://plas.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

[plasic x

€« C [I plas.io

Notes

1. filters.overlay (page 178) does point-in-polygon checks against every point that is read.

2. Points that are on the boundary are included.

Colorizing points with imagery

This exercise uses PDAL to apply color information from a raster onto point data. Point cloud
data, especially LiDAR (https://en.wikipedia.org/wiki/Lidar), do not often have coincident

330 Chapter 13. Workshop

../../../../_images/clipping-stadium-clipped.png
https://en.wikipedia.org/wiki/Lidar

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

color information. It is possible to project color information onto the points from an imagery
source. This makes it convenient to see data in a larger context.

Exercise

PDAL provides a filter (page 140) to apply color information from raster files onto point cloud
data. Think of this operation as a top-down projection of RGB color values on the points.

Because this operation is somewhat complex, we are going to use a pipeline to define it.

{
"pipeline": [
"./exercises/analysis/colorization/uncompahgre.laz",
{
"type": "filters.colorization",
"raster": "./exercises/analysis/colorization/casi—-2015-
—04-29-weekly-mosaic.tif"
b
{

"type": "filters.range",
"limits": "Red[1l:]"

"type": "writers.las",

"compression": "true",

"minor_version": "2",

"dataformat_id": "3",

"filename":"./exercises/analysis/colorization/
—uncompahgre—colored.laz"

}

Note: This JSON file is available in your workshop materials in the
./exercises/analysis/colorization/colorize. json file. Remember to open
this file and replace each occurrence of . / with the correct path for your machine.

Pipeline breakdown
1. Reader

After our pipeline errata, the first item we define in the pipeline is the point cloud file we’re
going to read.

13.1. Point Cloud Processing and Analysis with PDAL 331

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"./exercises/analysis/colorization/uncompahgre.laz",

2. filters.colorization

The filters.colorization (page 147) PDAL filter does most of the work for this operation. We’re
going to use the default data scaling options. This filter will create PDAL dimensions Red,
Green, and Blue.

{
"type": "filters.colorization",
"raster": "./exercises/analysis/colorization/casi-2015-04-29-
—weekly-mosaic.tif"

by

3. filters.range

A small challenge is the raster will colorize many points with NODATA values. We are going
to use the filters.range (page 214) to filter keep any points that have Red >= 1.

{
"type": "filters.range",
"limits": "Red[1l:]"

br

4. writers.las

We could just define the uncompahgre—-colored. laz filename, but we want to add a few
options to have finer control over what is written. These include:

{
"type": "writers.las",
"compression": "true",
"minor_ version": "2",
"dataformat_id": "3",
"filename":"./exercises/colorization/analysis/uncompahgre—
—colored. laz"

}

1. compression: LASzip (http://laszip.org) data is ~6x smaller than ASPRS LAS.

2. minor_version: We want to make sure to output LAS 1.2, which will provide the
widest compatibility with other softwares that can consume LAS.

332 Chapter 13. Workshop

http://laszip.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

3. dataformat_id: Format 3 supports both time and color information

Note: writers.las (page 117) provides a number of possible options to control how your LAS
files are written.

Execution

Invoke the following command, substituting accordingly, in your Conda Shell:

pdal pipeline ./exercises/analysis/colorization/colorize.json

|
Kpdallg) C:\>pdal pipeline ~
More? c:\Users\hobu\PDAL\exercises\analysis\colorization\colorize.json

(pdal19) C:\>.

Visualization

Use one of the point cloud visualization tools you installed to take a look at your
uncompahgre-colored. laz output. In the example below, we simply opened the file
using the http://plas.io website.

13.1. Point Cloud Processing and Analysis with PDAL 333

http://plas.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

[plasic x

&« C [} plas.io Jol R =

Notes

1. Applying color information that is not time-coincident with the point cloud data will
mean you will see discontinuities.

2. GDAL is used to read the image source. Any GDAL-readable data format can be used.

3. There are performance considerations to be aware of depending on the raster format and
type being used. See filters.colorization (page 147) for more information.

4. These data are of Uncompahgre Basin
(https://en.wikipedia.org/wiki/Uncompahgre_River) courtesy of the NASA Airborne
Snow Observatory (http://aso.jpl.nasa.gov/).

334 Chapter 13. Workshop

https://en.wikipedia.org/wiki/Uncompahgre_River
http://aso.jpl.nasa.gov/
http://aso.jpl.nasa.gov/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Removing noise

This exercise uses PDAL to remove unwanted noise in an airborne LiDAR collection.

Exercise

PDAL provides the outlier filter (page 174) to apply a statistical filter to data.

Because this operation is somewhat complex, we are going to use a pipeline to define it.

{
"pipeline": [

"./exercises/analysis/denoising/18TWK820985.1laz",
{

"type": "filters.outlier",

"method": "statistical",

"multiplier": 3,

"mean_k": 8

"type": "filters.range",
"limits": "Classification! [7:7],2[-100:3000]1"

"type": "writers.las",

"compression": "true",

"minor_version": "2",

"dataformat_id": "O",
"filename":"./exercises/analysis/denoising/clean.laz"

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/denoising/denoise. json file.

Pipeline breakdown
1. Reader

After our pipeline errata, the first item we define in the pipeline is the point cloud file we’re
going to read.

13.1. Point Cloud Processing and Analysis with PDAL 335

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"./exercises/analysis/denoising/18TWK820985.1laz",

2. filters.outlier

The PDAL outlier filter (page 174) does most of the work for this operation.

{
"type": "filters.outlier",
"method": "statistical",
"multiplier": 3,
"mean_k": 8

by

3. filters.range

At this point, the outliers have been classified per the LAS specification as low/noise points
with a classification value of 7. The range filter (page 214) can remove these noise points by
constructing a range (page 215) with the value Classification! [7:7], which passes
every point with a Classification value not equal to 7.

Even with the filters.outlier (page 174) operation, there is still a cluster of points with
extremely negative Z values. These are some artifact or miscomputation of processing, and we
don’t want these points. We can construct another range (page 215) to keep only points that are
within the range —100 <= Z <= 3000.

Both ranges (page 215) are passed as a comma-separated list to the range filter (page 214) via
the 1imits option.

{

"type": "filters.range",
"limits": "Classification![7:7],2[-100:3000]"
bo

4. writers.las

We could just define the clean. laz filename, but we want to add a few options to have finer
control over what is written. These include:

{

"type": "writers.las",
"compression": "true",
"minor_ version": "2",

336 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"dataformat_id": "O",

"filename":"./exercises/analysis/denoising/clean.laz"

1. compression: LASzip (http://laszip.org) data is ~6x smaller than ASPRS LAS.

2. minor_version: We want to make sure to output LAS 1.2, which will provide the
widest compatibility with other softwares that can consume LAS.

3. dataformat_id: Format 3 supports both time and color information

Note: writers.las (page 117) provides a number of possible options to control how your LAS
files are written.

Execution

Invoke the following command, substituting accordingly, in your ‘ Shell‘:

pdal pipeline ./exercises/analysis/denoising/denoise.json

(pdalworkshop) $ pdal density ./exercises/analysis/density/uncompahgre.laz \
> -0 ./exercises/analysis/density/density.sqlite \

> -f SQLite

(pdalworkshop) $

Visualization

Use one of the point cloud visualization tools you installed to take a look at your clean.laz
output. In the example below, we simply opened the file using the Fugro Viewer
(http://www.fugroviewer.com/)

13.1. Point Cloud Processing and Analysis with PDAL 337

http://laszip.org
../../../../_images/denoise-run-command.png
http://www.fugroviewer.com/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

| FugroViewer — ®
File Settings POl AOl Window Help

z| | A JlElE ClM Sl 2N e D oM o 2] <] =] 2o Q&)

e > [= [@][] | po cleanaz- 30 =B

>

£ 9ol I3

PAN 2X 582442.85 4499570.22 v
< > NAY 212.00 14.00 101211 10

Notes

1. Control the aggressiveness of the algorithm with the mean_k parameter.

2. filters.outlier (page 174) requires the entire set in memory to process. If you have really
large files, you are going to need to split (page 227) them in some way.

Visualizing acquisition density

This exercise uses PDAL to generate a density surface. You can use this surface to summarize
acquisition quality.

Exercise

PDAL provides an application (page 27) to compute a vector field of hexagons computed with
filters.hexbin (page 231). It is a kind of simple interpolation, which we will use for
visualization in QGIS (http://qgis.org).

338 Chapter 13. Workshop

../../../../_images/denoise-fugro.png
http://qgis.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Command

Invoke the following command, substituting accordingly, in your ‘ Shell‘:

pdal density ./exercises/analysis/density/uncompahgre.laz \
-0 ./exercises/analysis/density/density.sglite \
—-f SQLite

pdal density ./exercises/analysis/density/uncompahgre.laz *

-0 ./exercises/analysis/density/density.sqglite
—f SQLite

(pdalworkshop) C:‘\»>pdal density ~

More? c:/Users/hobu/PDAL/exercises/analysis/density/uncompahgre.laz *
More? -0 c:/Users/hobu/PDAL/exercises/analysis/density/density.sglite *
More? -f SQLite

(pdalworkshop) C:l\>a

Visualization

The command uses GDAL to output a SQLite (http://sqlite.org) file containing hexagon
polygons. We will now use QGIS (http://qgis.org) to visualize them.

1. Add a vector layer

13.1. Point Cloud Processing and Analysis with PDAL

339

../../../../_images/density-command-run.png
http://sqlite.org
http://qgis.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

/ QGIS 2.14.0-Essen
Project Edit View Settings Plugine Vector Raster Database Web Processing Help
D - Create Layer ! A - EW
= =l Add Layer + Add Vector Layer... Ctrl+Shift+V
Embed Layers and Groups... B, add Raster Layer... Crl4Shift+R
{K/ n Add from Layer Definition File. L
i g W, Add PostGIS Layers... Crl+5hift+D
Copy style /7, add Spatialite Layer... Ctrl+5hift+L
0 Ry bl Pe=sye W AddMSSQL Spatial Layer.., Ctrl+Shift+M
' Open Attribute Table @, Add Oracle Spatial Layer... Ctrl+5hift+0
g Homg ' Toagle Editi "
! e oggle Editing) Add WMSAWMTS Layer... Crl+Shift-+W
'D A/ [} save Layer Edits &, Add Orade GeoRaster Layer...
c:f | #F currentEdits " | addwcsLayer..
f D:f &
T Save As... 7 Add WFS Layer...
R Sawe As Layer Definition File... ’n Add Delimited Text Layer...
) |1 Remove Layer/Group Cirl+D m Add Virtual Layer...
% m ® 1 L] Duplicate Layer(s)
Set Scale Visibility of Layer(s)
% Set CRS of Layer(s) Ctrl+5hift+C
@ Set Project CRS from Layer
Properties...
% Filter... Ctrl+F
B #4 | abeling
@ DC! Add to Overview
, Start T2 Add All to Overview
a8 2 Remove Al from Overview
l‘ﬁ_ Stop @ Show All Layers Ctrl+Shift+U
V., “ Hide All Layers Ctrl+5hift+H
(:+] T #- Show Selected Layers
Criterion
oz - Hide Selected Layers
S8 | Length
| Time
5
Ish Calculate Export Clear
:: Help
¥
Coordinate | 234116,4220769 Scale |1:140,292 | ¥ Rotation 0.0 R/ Render

D ersazmes @

2. Navigate to the output directory

/. Open an 0GR Supported Vector Layer X
™ > Howard Butler » PDAL » exercises » analysis » colorization v O Search colorization pe
Organize « Mew folder
~
- BT ~ Name Date modified Type Size
[Desktop # =] casi-201 5-04-2%-weekly-mosaic TIF File 38,839 KB
‘ Downloads # 2] casi-2015-04-29-weekly-mosaic.tif.aux XML Document 12KB
% i f11720 : ST Fi
| V\psfDropbo # # colorization 311/2016 12:55 PM RST File 5KB
. ‘ colorize 31172016 122535 PM JSON File 1KB
Documents o) . y -
D density.sqlite 3/14/2016 218 PM SQLITE File 704 KB
< WpshiCloud # % uncompahgre 3/11/20169:38AM FugroViewerLidar.. 80,183 KB
[&] Pictures » Type: FugroViewer Lidar File
. . Size: 78.3 MB
© iCloud Drive 1.¢ Date modifiedk 3/11/2016 9:33 AM
& Dropbox (Ma #
info
b Music
pdal
src
@ OneDrive
3 This PC
[Decktop
Documents
A nrlnade e
File name: |\ v| | Al fites () v
| Open | | Cancel |

3. Add the density.sqglite file to the view

340

Chapter 13. Workshop

../../../../_images/density-add-layer.png
../../../../_images/density-select-layer.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

7 QGIS 2.14.0-Essen - O X

Edit View Layer Settings Pluging Vector Raster Database Web Progessing Help
DEBROR AL s NPPRAR & -K-&- - B
H = ~ @ & ﬁ =g @& (g aegd | Ghgl obd ad csw F> v’(,r

= =]

Browsar Panel
Velneriteo
=

Home
' P Favourites
4] Acf

e

2.
o

AL

R Layers Panel
q: a4 ® T &~ 3 0

% e .densihrldata' ; I heeie feol

@R

% Shorest path

Start

8°
[+

Stop

55 B
(3

Criterion Length -
“SE | Length
| Time
—
Igh Caleulate Export Clear
P

. v HEP
[

Coordinate | 238960,4222341 Scale | 1:140,292 | Rotaton 0.0 2 % render @) epsciases @ y

A

4. Right click on the density.sglite layer in the Layers panel and then choose
Properties.

5. Pick the Graduated drop down

Layer Properties - density /data/exercises/analysis/ colorization/density.sqlite MultiPolygon | Style ? *
= single Symbol -
= Single Symbol
=
2 Categorized Unit Milimeter hd
= Graduated Transparency 0% O=.
= Rule-based
(#) Point Displacement Color EB
n Inverted Polygons
¥ Heatmap Symbols in group ~ | Open Library
& 250
= 2

[l simple il | J ‘
@ - corners diagonal dotted green land water wine
ctions

4
¥ Joins

|ll Diagrams

(G vewdata

Variables

D D Save Advanced ~

w Layer rendering

Layer transparency C 1] :

Layer blending mode Normal ~ | Feature blending mode Normal -
Draw effects E]
Control feature rendering order] E]

Style ~ Cancel Apply Help

13.1. Point Cloud Processing and Analysis with PDAL 341

../../../../_images/density-file-open.png
../../../../_images/density-graduated-symbols-pick.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

6. Choose the Count column to visualize

7 Layer Properties - density /data/exercises/analysis/colorization/density.sglite MultiPolygen | Style T x

= Graduated - -

Column -
G 123 id
o
€3 Labels " [

Legend Format = %41 - %2 Predsion |4 : Trim

B rieds

Method Color -

Rende:
endering @ - Blues - Edit Invert

Classes Histogram |

Mode Equal Interval v Classes 5 3 Classify

Symbol . |Values Legend
|l2l Diagrams
(G vetadata

Add dass Delete Delete all X Link dass boundaries
Advanced ~
¥ Layer rendering
Layer transparency C 0 :
Layer blending mode Mormal | Feature blending mode Mormal

Draw effects

=
Control feature rendering order [] E] @
Style - Cancel Apply Help

7. Choose the Classify button to add intervals

Layer Properties - density /data/exercises/analysis/colorization/ density.sqlite MultiPolygen | Style T X
\-__. F— = Graduated - @
Column 123 count -
Symbal . Change...
€ Labels
Legend Format = %41 - %2 Predsion |4 : Trim
B Fields
Method Color -
Calor ramp - Blues - Edit Invert
Classes Histogram |
Mode Equal Interval v Classes 5 3 Classify
Symbol . |Values Legend
|l2l Diagrams
(G vetadata
Add dass Delete Delete all | Link class boundaries
Advanced ~
¥ Layer rendering
Layer transparency C 0 :
Layer blending mode Mormal | Feature blending mode Mormal
Draw effects

-
Control feature rendering order [] E] @
Style - Cancel Apply Help

8. Adjust the visualization as desired

342 Chapter 13. Workshop

../../../../_images/density-count-attribute.png
../../../../_images/density-Graduated-symbols.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

7 QGIS 2.14.0-Essen - O X

Project Edit View Layer Settings Pluging Vector Raster Database Web Progessing Help
=) =) mn 'N"\) /;\ '\I ‘,'\I I =" # = '
O 1R RO LPL,rPRPPRARKAR - -K &~ -
R o - = ~ . ab a
B % O g 2

abd (g abc| (abg ‘abel (abd csw Vkr
4 B] ® = L W '=>

W

Browsar Panel
o GRTHO
'O Home
Favourites
'O Af
c:f
ﬁ D:/ E
=] + 1ied g
b
Lol <] iyl
@ [o
& x
x 2879 - 4318
x l 4318 - 5757 @
P Shortest path #
(Yé
Start
%
Ve
Criterion Length -
& Length
| Time
Igh Caleulate Export Clear ..01; i
+
::; Help
Toggles the editing state of the currentlz Coordinate | 233263,4216241 Scale | 1:140,292 | ¥ Rotaton 0.0 : % render @ ersGizs01z @

Notes

1. You can control how the density hexagon surface is created by using the options in
filters.hexbin (page 231).

The following settings will use a hexagon edge size of 24 units.

——filters.hexbin.edge_size=24

2. You can generate a contiguous boundary using PDAL (https://pdal.io/)’s tindex
(page 37).

Thinning

This exercise uses PDAL to subsample or thin point cloud data. This might be done to
accelerate processing (less data), normalize point density, or ease visualization.

13.1. Point Cloud Processing and Analysis with PDAL 343

../../../../_images/density-final-render.png
https://pdal.io/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Exercise

As we showed in the Visualizing acquisition density (page 338) exercise, the points in the
uncompahgre.laz file are not evenly distributed across the entire collection. While we will not
get into reasons why that particular property is good or bad, we note there are three different
sampling strategies we could choose. We can attempt to preserve shape, we can try to
randomly sample, and we can attempt to normalize posting density. PDAL provides capability
for all three:

* Poisson using the filters.sample (page 216)

* Random using a combination of filters.decimation (page 205) and filters.randomize
(page 190)

* Voxel using filters.voxelgrid

In this exercise, we are going to thin with the Poisson method, but the concept should operate
similarly for the filters.voxelgrid approach too.

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

pdal translate ./exercises/analysis/density/uncompahgre.laz \
./exercises/analysis/thinning/uncompahgre-thin.laz \
sample ——filters.sample.radius=20

pdal translate ./exercises/analysis/density/uncompahgre.laz *
./exercises/analysis/thinning/uncompahgre-thin.laz *
sample ——filters.sample.radius=20

(pdalworkshop) $pdal translate ./exercises/analysis/density/uncompahgre.laz \
> ./exercises/analysis/thinning/uncompahgre-thin.laz \

> sample --filters.sample.radius=20

(pdalworkshop) $

Visualization

http://plas.io has the ability to switch on/off multiple data sets, and we are going to use that
ability to view both the uncompahgre.laz and the uncompahgre-thin. laz file.

344 Chapter 13. Workshop

../../../../_images/thinning-command-run.png
http://plas.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Original

Random Voxel Grid

Fig. 13.3: Thinning strategies available in PDAL

13.1. Point Cloud Processing and Analysis with PDAL 345

../../../../_images/thinning-overview.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

[plasic
= C [3 plas.io

LAVUOL YATA TV VIaFLAT

Erowse

Open

DENSITY

DATA SET
Mame uncompahgre.laz
File Version 1.2
Compressed? Yes

Fig. 13.4: Selecting multiple data sets in http://plas.io

346

Chapter 13. Workshop

../../../../_images/thinning-select-data.png
http://plas.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

[4 plas.io x

&« C [plasio

Fig. 13.5: Full resolution Uncompahgre data set

13.1. Point Cloud Processing and Analysis with PDAL 347

../../../../_images/thinning-select-data.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

- O >
[plasic
€« C plas.io

Fig. 13.6: Uncompahgre thinned at a radius of 20m

348

Chapter 13. Workshop

../../../../_images/thinning-poisson-thin.png

N S

S T N

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Notes

1. Poisson sampling is non-destructive. Points that are filtered with filters.sample
(page 216) will retain all attribute information.

Identifying ground

This exercise uses PDAL to classify ground returns using the Simple Morphological Filter
(SMRF) technique.

Note: This excerise is an adaptation of the pcl_ground tutorial on the PDAL website by Brad
Chambers. You can find more detail and example invocations there.

Exercise

The primary input for Digital Terrain Model
(https://en.wikipedia.org/wiki/Digital_elevation_model) generation is a point cloud with
ground vs. not-ground classifications. In this example, we will use an algorithm provided by
PDAL, the Simple Morphological Filter technique to generate a ground surface.

See also:

You can read more about the specifics of the SMRF algorithm from [Pingle2013]_

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

pdal translate ./exercises/analysis/ground/CSitel_orig-utm.laz \
-0 ./exercises/analysis/ground/ground.laz \

smrf \

-v 4

A

pdal translate ./exercises/analysis/ground/CSitel_orig-utm.laz
-0 ./exercises/analysis/ground/ground.laz *
smrf *

-v 4

13.1. Point Cloud Processing and Analysis with PDAL 349

https://en.wikipedia.org/wiki/Digital_elevation_model

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(pdalworkshop) $pdal translate ./exercises/analysis/ground/CSitel_orig-utm.laz \

> -0 ./exercises/analysis/ground/ground.laz \

> smrf \

> -v 4

(PDAL Debug) Debugging. ..

(pdal translate readers.las Debug) GDAL debug: OGRSpatialReference::Validate: No root pointer.
(pdal translate readers.las Debug) GDAL debug: OGRSpatialReference::Validate: No root pointer.
(pdal translate readers.las Debug) GDAL debug: OGRSpatialReference::Validate: No root pointer.
(pdal translate Debug) Executing pipeline in standard mode.

(pdal translate filters.smrf Debug) progressiveFilter: radius = 1 767170 ground 4631 non-ground (@.60%)

(pdal translate filters.smrf Debug) progressiveFilter: radius = 1 576488 ground 195313 non-ground (25.31%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 2 519149 ground 252652 non-ground (32.74%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 3 492155 ground 279646 non-ground (36.23%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 4 473156 ground 298645 non-ground (38.69%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 5 454156 ground 317645 non-ground (41.16%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 6 433943 ground 337858 non-ground (43.78%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 7 414492 ground 357309 non-ground (46.30%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 8 399457 ground 372344 non-ground (48.24%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 9 388449 ground 383352 non-ground (49.67%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 10 382942 ground 388859 non-ground (50.38%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 11 379683 ground 392118 non-ground (50.81%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 12 377098 ground 394703 non-ground (51.14%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 13 374993 ground 396808 non-ground (51.41%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 14 373622 ground 398179 non-ground (51.59%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 15 372487 ground 399314 non-ground (51.74%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 16 372248 ground 399553 non-ground (51.77%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 17 371884 ground 399917 non-ground (51.82%)
(pdal translate filters.smrf Debug) progressiveFilter: radius = 18 371674 ground 400127 non-ground (51.84%)

(pdal translate writers.las Debug) Wrote 1366408 points to the LAS file
(pdalworkshop) S%

As we can see, the algorithm does a great job of discriminating the points, but there’s a few
issues.

350 Chapter 13. Workshop

../../../../_images/ground-run-command.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

® 0 ® /[plasio x (19 Howard
< C (0 | © plasio Q& O@He
For quick access, place your bookmarks here on the bookmarks bar. |mport bookmarks now.. ES Other Bookmarks

enGL ES 2.0 Chromium), Prowiders WebKit

There’s noise underneath the main surface that will cause us trouble when we generate a terrain
surface.

13.1. Point Cloud Processing and Analysis with PDAL 351

../../../../_images/ground-classified-included.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

® [plasio x) Howard
— C {t @ plas.io CHR N O) ﬁh 9
For quick access, place your bockmarks here on the bookmarks bar. |r L T ES Other Bookmarks

venGL ES 2.@ Chromium), Provider: WebKit

Filtering

We do not yet have a satisfactory surface for generating a DTM. When we visualize the output
of this ground operation, we notice there’s still some noise. We can stack the call to SMRF

with a call to a the filters.outlier technique we learned about in denoising.

1. Let us start by removing the non-ground data to just view the ground data:

pdal translate \
./exercises/analysis/ground/CSitel_orig-utm.laz \
-0 ./exercises/analysis/ground/ground.laz \

smrf range \
——filters.range.limits="Classification[2:2]" \

352 Chapter 13

. Workshop

../../../../_images/ground-classified-included-side.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

6 |—v 4

1 ' pdal translate *

» | ./exercises/analysis/ground/CSitel_orig-utm.laz *
3 |—0 ./exercises/analysis/ground/ground.laz *

4 |smrf range %

s |——filters.range.limits="Classification[2:2]" #
6 —v 4
® /[plasio X) Howard
< C 1t | @ plas.io @ % O EE..
For quick access, place your bookmarks here on the bookmarks bar. |mport books OW... ES Other Bookmarks

B (OpenGL ES 2.8 Chromium), Provider: WebKit

2. Now we will instead use the translate (page 38) command to stack the filters.outlier
(page 174) and filters.smrf (page 185) stages:

1 'pdal translate ./exercises/analysis/ground/CSitel_orig-utm.laz \
2> |-0 ./exercises/analysis/ground/denoised-ground-only.laz \

13.1. Point Cloud Processing and Analysis with PDAL 353

../../../../_images/ground-ground-only-view.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

outlier smrf range \

——filters.
——filters.
——filters.
——filters.
——writers.

—-—verbose

pdal translate
-0 ./exercises/analysis/ground/denoised-ground-only.laz
outlier smrf range
——filters.
——filters.
——filters.
——filters.
——writers.

——verbose

outlier.method="statistical" \

outlier.mean_k=8 —-filters.outlier.multiplier=3.0 \
smrf.ignore="Classification[7:7]" \
range.limits="Classification[2:2]" \

las.compression=true
4

A

outlier.method="statistical"

\

A

./exercises/analysis/ground/CSitel_orig-utm.laz *

A

outlier.mean_k=8 —--filters.outlier.multiplier=3.0 "

smrf.ignore="Classification[7:7]"
range.limits="Classification([2:2]"

las.compression=true
4

A

A

A

In this invocation, we have more control over the process. First the outlier filter merely
classifies outliers with a Classification value of 7. These outliers are then ignored
during SMREF processing with the i gnore option. Finally, we add a range filter to extract
only the ground returns (i.e., Classification value of 2).

The result is a more accurate representation of the ground returns.

354

Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

® 0 ® /[plasio x (!9 Howard
< C (0 | © plasio Q& OwHe
For quick access, place your bookmarks here on the bookmarks bar. |mport bookmarks now.. ES other Bookmarks

DpenGL ES 2.0 Chromium), P

Generating a DTM

This exercise uses PDAL to generate an elevation model surface using the output from the
Identifying ground (page 349) exercise, PDAL’s writers.gdal (page 112) operation, and GDAL
(http://gdal.org/) to generate an elevation and hillshade surface from point cloud data.

Exercise

Note: The primary input for Digital Terrain Model
(https://en.wikipedia.org/wiki/Digital_elevation_model) generation is a point cloud with

13.1. Point Cloud Processing and Analysis with PDAL 355

http://gdal.org/
https://en.wikipedia.org/wiki/Digital_elevation_model

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

ground classifications. We created this file, called denoised-ground-only. laz, in the
Identifying ground (page 349) exercise. Please produce that file by following that exercise
before starting this one.

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

PDAL capability to generate rasterized output is provided by the writers.gdal (page 112) stage.
There is no application (page 25) to drive this stage, and we must use a pipeline.

Pipeline breakdown

"pipeline": [
"./exercises/analysis/ground/denoised-ground-only.laz",
{
"filename":"./exercises/analysis/dtm/dtm.tif",
"gdaldriver":"GTiff",
"output_type":"all",
"resolution":"2.0",
"type": "writers.gdal"

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/dtm/dtm. json file. Make sure to edit the filenames to match
your paths.

1. Reader

denoised-ground-only is the LASzip (http://laszip.org) file we will clip. You should
have created this output as part of the Identifying ground (page 349) exercise.

2. writers.gdal

The writers.gdal (page 112) writer that bins the point cloud data into an elevation surface.

356 Chapter 13. Workshop

http://laszip.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Execution

pdal pipeline

./exercises/analysis/dtm/gdal. json

(pdalworkshop) $ pdal pipeline ./exercises/analysis/dtm/gdal.json

(pdalworkshop) $fJ

Visualization

Something happened, and some files were written, but we cannot really see what was
produced. Let us use qgis to visualize the output.

1. Open qgis and Add Raster Layer:

/ aais2187
Project Edit View ’m Settings Plugins Vector Raster Datat Web Help

Cleat=layey ‘o @ s f) . ([0) £
Add Layer & ‘\[; Add Vector Layer... Ctrl+Shift+V e
Embed Layers and Groups... + Add Raster Layer... Ctrl45hift+R = cew
Add from Layer Definition File... 'u Add PostGIS Layers... Cirl+Shift4D
Copy style A7 Add Spatialite Layer... Ctrl+5hift-+.
Paste style W add MsSQL Spatial Layer... Cirl-+5hift-+M
Open Attribute Table F& [, Add DB2 Spatial Layer... Ctrl+shift+2
Toggle Editing @, Add Oracle Spatial Layer... Ctrl+shift+0
Save Layer Edits &) Add WMS/WMTS Layer... Crl+Shift+w

&/ Current Edits " |67 Add ArcGIS MapServer Layer...
Save As... @a Add WCS Layer...
Save As Layer Definition File... .x.:'a Add WFS Layer...
Remove Layer [Group Ctrl+D a_‘a Add ArcGIS FeatureServer Layer...
Duplicate Layer(s) 9, Add Delimited Text Layer...
Set Scale Visibility of Layer(s) 'Q AddjEdit Virtual Layer...
Set CRS of Layer(s) Ctrl+5hift+C
Set Project CRS from Layer
Properties...
Filter... Cirl+F
Labeling
Add to Overview
Add All to Overview

% Remove All from Overview

®. Show All Layers Ctrl+shift+U
Hide All Layers Ctrl+5hift+H

#. Show Selected Layers

+ Hide Selected Layers
Coordinate| 512095,5404215 % Scale | 1:6,403 v | & Magnifier 100% 2| Rotation 0.0 2| % Render

— O
':: v oo»
ﬂ)
€ EPsG:32632

=)

2. Add the dtm.tif file from your . /exercises/analysis/dtm directory.

13.1. Point Cloud Processing and Analysis with PDAL

357

../../../../_images/dtm-run-command.png
../../../../_images/dtm-add-raster-layer.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

/" Open a GDAL Supported Raster Data Source

i « pdal » exercises » analysis * dtm ~
Organize - Mew folder
" Mame Date
#F Quick access
= dtm 5/18/17 4:07 PM
[Desktop -) o
|] gdal.json 3/31/16 9:45 AM

»
; Downloads
£ Docurnents #
&= Pictures b
dtm

ground

PDAL

pdal-osgeodw
W

2 items Availability: Available offline

File name: |

L |

>
Search dtm 2
- - 1l]| o
Type Size
TIF File 1,510
150N File 1
>
All files (%) e

Z QGls218.7

Project Edit View Layer 5

N L
m I v

Browser Panel E
Vo oY

Home
Favourites

& ArcGisFeaturese
@ ArcGisMapServe

L2 GD
Layers Panel @
‘\J;v = o @ T

1legend Coordinate | 512022,540

3. Classify the DTM by right-clicking on the dfm.tif and choosing Proper-
ties. Pick the pseudocolor rendering type, and then choose a color ramp and click Classify.

358

Chapter 13. Workshop

../../../../_images/dtm-add-raster-mean.png
../../../../_images/dtm-qgis-added.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

] Layer Properties - dtm | Style ?
¥ Band rendering
Render type Singleband gray A
Multiband color
|8 Transparency Gray band Paletted T
ST
a olor gradient | g; - a
H Pyramids g aliﬂieat;aend pseudocolor .H R
M . Max | 402,775
== Histogram Contrast = Histogram
ontras Stretch to MinMax -

enhancement

(i Metadata

(i Metadata

P Load min/max values
- -
Legend Legend
w Color rendering

Blending mode | Mormal -

Brightness {} 0 : [Contrast

Saturation {7} 0 = [Graysmle off -
Hue Colorize [:E] Strength O 100% s

¥ Resampling

Zoomed: in | Nearestneighbour | | out |Mearest neighbour |« Oversampling 2.00 >

Thumbnail Legend Palette

tyle T Cancel Apply Help

4. qgis provides access to GDAL (http://gdal.org/) processing tools, and we are going to use
that to create a hillshade of our surface. Choose Raster—>Analysis—>Dem:

5

13.1. Point Cloud Processing and Analysis with PDAL 359

../../../../_images/dtm-qgis-classify.png
../../../../_images/dtm-qgis-colorize-dtm.png
http://gdal.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

7 0Gls2.18.7

Project Edit View Layer Settings Plugins Vector |Raster | Datat

Web Help

- O X

DEBRLR [FoF

Raster Calculator...

HEprpPpLallre &a@--

#J/BRGBRT

Browser Panel

GRTHO
: Home
Favourites

Q.:' ArcGisFeamreSerE

o a ArcGisMapServer

LT
an
Layers Panel

« @ @ T »

r iy

Align Rasters...

- R :
e | OES R g E A
Extraction »

Sieve...
Miscellaneous > Near Black...
GdalTools Settings. .. Fil nodata...

Proximity (Raster Distance)...

Grid (Interpolation)...

Tool to a Coordinate | 512317,5404215 | ¥ Scale | 1:6,403

v @ Magnifier | 100%

12 Rotation 0.0

I%]@Render @ epseiazezz @

5. Click the window for the Output file and select a location to save the hillshade.tif

360

Chapter 13. Workshop

../../../../_images/dtm-qgis-select-hillshade.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

/" DEM (Terrain models) ? ot

Input file (DEM raster) dtm.idw - Select...

Qutput file analysis/dtm fhillshade. tif
Band [1 %]

Compute edges

Use Zevenbergen&Thorne formula (instead of the Horn's one)

Mode Hillshade -
Mode Options
Z factor (vertical exaggeration) 1.00 :
Scale (ratio of vert, units to horiz.) 1.00 :
Azimuth of the light 315.0 =
Altitude of the light 45.0 =
- Creation Options
Profile | Default | v]
Mame Value “F | |
Validate
Help
¥ Load into canvas when finished
gdaldem hillshade C: E]
Wsers\Howard \PD AL \exerdses\analysis\dtm\dtm. idw. tif

C: Users/Howard [PDAL fexercises fanalysis /dim fhillshade. tif - D
z 1.0 s 1.0 -az 315.0 -alt 45.0 -of GTiff

13.1. Point Cloud Processing and Analysis with PDAL 361

- | . [0 P

../../../../_images/dtm-qgis-gdaldem.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

gdaldem hillshade ./exercises/analysis/dtm/dtm.tif \
./exercises/analysis/dtm/hillshade.tif \

-z 1.0 -s 1.0 —az 315.0 -alt 45.0 \

-of GTiff

gdaldem hillshade ./exercises/analysis/dtm/dtm.tif *
./exercises/analysis/dtm/hillshade.tif *

-z 1.0 -s 1.0 -az 315.0 -alt 45.0 ~©

-of GTiff

Click OK and the hillshade of your DTM is now available

7 0Gls2.18.7 - | X

Project Edit View Layer Settings Plugins Vector Raster Database Web Help

NEBRCR P02 L2 HPPRALABIR @ a- -
P/BRLH-BROPE “QEHIESDD & &

Browser Panel
Vo GRTHO
'ﬂ Home

<0 Favourites

6‘—;3 h &_':' ArcGisFeatureSer.

’@ ArcGisMapServer@
’ |2
‘ D)
l'ﬁ. Layers Panel
\JS - | @& I@ U; Y »

Coordinate| 512499,5403203 |98 Scale | 1:6,403 ~ & ‘Magnifier 100% 5 Rotaon 0.0 2| % Render €D EpsG:3zesz @

-

Notes

1.

gdaldem (http://www.gdal.org/gdaldem.html), which powers the qgis DEM tools, is a
very powerful command line utility you can use for processing data.

2. writers.gdal (page 112) can be used for large data, but it does not interpolate a typical

TIN (https://en.wikipedia.org/wiki/Triangulated_irregular_network) surface model.

362

Chapter 13. Workshop

../../../../_images/dtm-qgis-hillshade-done.png
http://www.gdal.org/gdaldem.html
https://en.wikipedia.org/wiki/Triangulated_irregular_network

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Creating surface meshes

This exercise uses PDAL to create surface meshes. PDAL is able to use a number of meshing
filters: https://pdal.io/stages/filters.html#mesh. Three of these are ‘in the box’, without needing
plugins compiled. These are 2D Delaunay triangulation, Greedy projection meshing and
Poisson surface meshing.

In this exercise we’ll create a Poisson surface mesh - a watertight isosurface - from our input
point cloud.

Exercise

We will create mesh models of a building and its surrounds using an entwine data input source.
After running each command, the output .ply file can be viewed in Meshlab or CloudCompare.
See also:

PDAL implements Mischa Kazhdan’s Poisson surface reconstruction algorithm. For details see
[Kazhdan2006] _

Note: writers.ply will write out mesh vertices by default. In this exercise we set the attribute
Jaces="true”. Try using the ply writer without it. Also, if you’re using a machine with a lot of
processing power, try increasing the depth parameter for a more detailed mesh.

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

pdal translate -1 ept://http://act-2015-rgb.s3.amazonaws.com \
-0 ./exercises/analysis/meshing/first-mesh.ply \
poisson ——-filters.poisson.depth=16 \
——-readers.ept.bounds="([692738, 692967], [6092255,6092562])" \
——verbose 4

pdal translate -i ept://http://act-2015-rgb.s3.amazonaws.com "
-0 ./exercises/analysis/meshing/first-mesh.ply *
poisson ——filters.poisson.depth=16 *
——readers.ept.bounds="([692738, 692967], [6092255,6092562])" ~
——verbose 4

13.1. Point Cloud Processing and Analysis with PDAL 363

https://pdal.io/stages/filters.html#mesh

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(pdalworkshop) $ pdal translate -i ept://http://act-2015-rgb.s3.amazonaws.com \
> -0 ./exercises/analysis/meshing/first-mesh.ply \
poisson --filters.poisson.depth=16 \
--readers.ept.bounds="([692738, 692967], [6@92255,6092562])" \
--verbose 2
Read input into tree:
Got kernel density:
Got normal field:
Finalized tree:
Set FEM constraints:
#Set point constraints:
Got average:
(pdalworkshop) $

H O H RV VOV

You can view the mesh in Cloud Compare, you should see something similar to

CloudCompare v2.10.1 (Zephyrus) [64-bit]

B <GEF e X Swap .0 0 s Bag ~ ¢+ « 0 nmom+ 8 &
| ()

DB Tree [J 3D View 1

v & first-mesh.ply (/Users...
B @ o first-mesh - Cloud

Properties

Property State/Value

Points 1,608,810

Global shift (0.00;0.00;0.00)
Global scale 1.000000

Point size 3

Count 1

Active intensity
Current Blue>Green>Yell
Steps 256

Visible

[Display ranges Paramet

Filtering

If we want to just mesh a building, or just terrain, or both we can apply a range filter based on
point classification. These data have ground labelled as class 2, and buildings as 6.

In this exercise we will create a poisson mesh surface of a building and the ground surrounding
it, using the same data subset as above and adding a filters.range (page 214) stage to limit the
set of points used in mesh creation.

364 Chapter 13. Workshop

../../../../_images/meshing.png
../../../../_images/first-mesh.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Command

Invoke the following command, substituting accordingly, in your Conda Shell:

pdal translate -i ept://http://act-2015-rgb.s3.amazonaws.com \
-0 ./exercises/analysis/meshing/building-exercise.ply \
range poisson \

——filters.range.limits="Classification[2:2],Classification[6:6]" \
——filters.poisson.depth=16 \
——readers.ept.bounds=" ([692738, 692967], [6092255,6092562])" \

——verbose 4

A

pdal translate -1 ept://http://act-2015-rgb.s3.amazonaws.com

A

-0 ./exercises/analysis/meshing/building-exercise.ply

A

range poisson

——filters.range.limits="Classification[2:2],Classification[6:6]" *
——filters.poisson.depth=16 *
——-readers.ept.bounds=" ([692738, 692967], [6092255,6092562])" ~

——verbose 4

(pdalworkshop) $ pdal translate -i ept://http://act-2015-rgb.s3.amazonaws.com \
> -0 ./exercises/analysis/meshing/building-exercise.ply \

> range poisson \

> --filters.range.limits="Classification[2:2],Classification[6:6]" \
> --filters.poisson.depth=16 \

> --readers.ept.bounds="([692738, 692967], [6@92255,6092562])" \

> --verbose 2

Read input into tree:

Got kernel density:

Got normal field:

Finalized tree:

Set FEM constraints:

#Set point constraints:

Got average:

(pdalworkshop) $

Rasterizing Attributes

This exercise uses PDAL to generate a raster surface using a fully classified point cloud with
PDAL’s writers.gdal (page 112).

Exercise

13.1. Point Cloud Processing and Analysis with PDAL 365

../../../../_images/meshing-buildings.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: The exercise fetches its data from a Entwine (https://entwine.io) service that organizes
the point cloud collection for the entire country of Denmark. You can view the data online at
http://potree.entwine.io/data/denmark.html

Command

PDAL capability to generate rasterized output is provided by the writers.gdal (page 112) stage.
There is no application (page 25) to drive this stage, and we must use a pipeline.

Pipeline breakdown

"pipeline": [
{

"type":"readers.ept",

"filename":"http://na-c.entwine.io/dk",
"bounds":" ([1401016, 14106701, [7476527, 7484590]1)",
"resolution": 5

"type":"writers.gdal",
"filename":"denmark-classification.tif",
"dimension":"Classification",
"data_type":"uintle_t",
"output_type":"mean",

"resolution": 5

Note: This pipeline is available in your workshop materials in the
./exercises/analysis/dtm/dtm. json file. Make sure to edit the filenames to match

your paths.

1. Reader

"type":"readers.ept",

366 Chapter 13. Workshop

https://entwine.io
http://potree.entwine.io/data/denmark.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"filename":"http://na-c.entwine.io/dk",
"bounds":" ([1401016, 14106701, [7476527, 74845901)",
"resolution": 5

by

The data is read from a EPT resource that contains the Denmark data. We’re going to
download a small patch of data by the Copenhagen airport area that is the limited to a spatial
resolution of Sm.

2. writers.gdal

The writers.gdal (page 112) writer that bins the point cloud data with classification values.

{
"type":"writers.gdal",
"filename":"denmark-classification.tif",
"dimension":"Classification",
"data_type":"uintl6_t",
"output_type":"mean",
"resolution": 5

Execution

Issue the pipeline (page 45) operation to execute the interpolation:

pdal pipeline ./exercises/analysis/rasterize/classification.json -v 3

"pipeline": [
{

"type":"readers.ept",

"filename":"http://na-c.entwine.io/dk",
"bounds":" ([1401016, 1410670], [7476527, 7484590])",
"resolution": 5

"type":"writers.gdal",

"filename":"denmark-classification.tif",
"dimension":"Classification",
"data_type":"uintle_t",
"output_type":"mean",

"resolution": 5

13.1. Point Cloud Processing and Analysis with PDAL 367

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(pdalworkshop) $ pdal pipeline ./exercises/analysis/rasterize/classification.json -v 3

(PDAL Debug) Debugging. . .
(pdal pipeline readers.ept Debug) Endpoint: http://na-c.entwine.io/dk/

Got EPT info

SRS: PROJCS["WGS 84 / Pseudo-Mercator",GEOGCS["WGS 84" ,DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563 ,AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG", "6326
"], PRIMEM["Greenwich" ,@,AUTHORITY["EPSG","8901"]],UNIT["degree" ,0.0174532925199433, AUTHORITY["EPSG" , "9122"]],AUTHORITY["EPSG" , "4326"]],PROJECTION["Mercator_1SP
"],PARAMETER["central_meridian",@],PARAMETER["scale_factor",1],PARAMETER["false_easting",@],PARAMETER["false_northing",@],UNIT["metre",1,AUTHORITY["EPSG", "9001"
1],AXIS["X",EAST],AXIS["Y" ,NORTH], EXTENSION["PR0OJ4", "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +wk
text +no_defs"],AUTHORITY["EPSG","3857"]]
Root resolution: 3108.53
Query resolution: 10
Actual resolution: 6.07135

Depth end: 10

Query bounds: ([1102422, 11074681, [7762273, 77779011, [-1.797693134862316e+308, 1.797693134862316e+308])

Threads: 4

(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline
(pdal pipeline

readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.

Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)

Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering
Registering

dim
dim
dim
dim
dim
dim
dim
dim
dim
dim
dim
dim
dim
dim
dim
dim

X: double

Y: double

Z: double

Intensity: uintl6_t
ReturnNumber: uint8_t
NumberOfReturns: uint8_t
ScanDirectionFlag: uint8_t
EdgeOfFlightLine: uint8_t
Classification: uint8_t
ScanAngleRank: float
UserData: uint8_t
PointSourceld: uintl6_t
GpsTime: double

Red: uintl6_t

Green: uintl6_t

Blue: uintl6_t

Debug) Executing pipeline in standard mode.
Debug) Overlap nodes: 79
Overlap points: 7242657

readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.
readers.

Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)
Debug)

Data
Data
Data
Data
Data
Data
Data
Data
Data

772
28
3/79:
4/79:
5/79:
6/79:
7/79:
8/79:
C)/7/2)2

368

Chapter 13. Workshop

../../../../_images/rasterization-classification-run-command.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Visualization

Basic interpolation of data with writers.gdal (page 112) will output raw classification values
into the resulting raster file. We will need to add a color ramp to the data for a satisfactory
preview.

Unfortunately, this doesn’t give us a very satisfactory image to view. The reason is there is no
color ramp associated with the file, and we’re looking at pixel values with values from 0-31
according to the ASPRS LAS specification.

We want colors that correspond to the classification values a bit more directly. We can use a
color ramp to assign explicit values. qgis allows us to create a text file color ramp that gdaldem
can consume to apply colors to the data.

QGIS Generated Color Map Export File
139 51 38 255 Ground

143 201 157 255 Low Veg

5 159 43 255 Med Veg

47 250 11 255 High Veg

209 151 25 255 Building

232 41 7 255 Low Point

197 0 204 255 reserved

26 44 240 255 Water

© O J o U W N e

13.1. Point Cloud Processing and Analysis with PDAL 369

../../../../_images/rasterization-denmark-no-ramp.png

20

21

22

23

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

10 165 160 173 255 Rail

11 81 87 81 255 Road

12 203 210 73 255 Reserved
13 209 228 214 255 Wire - Guard (Shield)

14 160 168 231 255 Wire - Conductor

15 220 213 164 255 Transmission Tower

16 214 211 143 255 Wire—-Structure Connector

17 151 98 203 255 Bridge Deck
18 236 49 74 255 High Noise
19 185 103 45 255 Reserved

21 58 55 9 255 255 Reserved
22 76 46 58 255 255 Reserved
23 20 76 38 255 255 Reserved
26 78 92 32 255 255 Reserved

(Phase)

(Insulator)

With this ramp, you can load the color values into QGIS as a color ramp if you change the
layer to Palatted/Unique Values, and then load the color ramp file:

¥ Band Rendering

Render type | Paletted/Unique values ~

Band Band 1: mean (Gray)

Color ramp

Value Color Label
Classify

v Color Rendering

Blending mode Normal
e

Brightness

Saturation e

Hue Colorize

Random colors

Delete All

%| Contrast =

-| Grayscale |Off

¥ Strength ¢

a

- T~

S k% B

Load Color Map from File...
&rei Export Color Map to File...

] =

v

v

With the ramp, we can also use gdaldem (http://www.gdal.org/gdaldem.html) to apply it to a

new image:

370

Chapter 13. Workshop

../../../../_images/rasterization-qgis-load-color-palette.png
http://www.gdal.org/gdaldem.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

gdaldem color-relief denmark-classification.tif ramp.txt classified-
—~color.png —-of PNG

Intensity

With PDAL’s ability to override pipeline via commands, we can generate a relative intensity

image:

pdal pipeline
——writers.gdal
——writers.gdal
——-writers.gdal
-v 3

gdal_translate

./exercises/analysis/rasterize/classification. json \
.dimension="Intensity" \

.data_type="float" \

.filename="intensity.tif" \

intensity.tif intensity.png -of PNG

pdal pipeline
—-—writers.gdal
-—writers.gdal

./exercises/analysis/rasterize/classification. json *
.dimension="Intensity" *

.data_type="float" *

—-—-writers.gdal.

filename="intensity.tif" *

13.1. Point Cloud Processing and Analysis with PDAL 371

../../../../_images/rasterization-colored-classification.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

gdal_translate intensity.tif intensity.png —of PNG

The same pipeline can be used to generate a preview image of the Intensity channel of the data
by overriding pipeline arguments at the command line.

Notes

1. writers.gdal (page 112) can output any dimension PDAL can provide, but it is is up to
the user to interpolate the values. For categorical data, neighborhood smoothing might
produce undesirable results, for example.

2. Pipeline (page 45) contains more information about overrides and organizing complex
pipelines.

372 Chapter 13. Workshop

../../../../_images/rasterization-colored-intensity.png

=T T - ¥ N O

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Python

Plotting a histogram
Exercise

PDAL doesn’t provide every possible analysis option, but it strives to make it convenient to
link PDAL to other places with substantial functionality. One of those is the Python/Numpy
universe, which is accessed through PDAL’s Python (page 257) bindings and the filters.python
(page 242) filter. These tools allow you to manipulate point cloud data with convenient Python
tools rather than constructing substantial C/C++ software to achieve simple tasks, compute
simple statistics, or investigate data quality issues.

This exercise uses PDAL to create a histogram plot of all of the dimensions of a file. matplotlib
(https://matplotlib.org/) is a Python package for plotting graphs and figures, and we can use it
in combination with the Python (page 257) bindings for PDAL to create a nice histogram.
These histograms can be useful diagnostics in an analysis pipeline. We will combine a Python
script to make a histogram plot with a pipeline (page 32).

Note: Python allows you to enhance and build functionality that you can use in the context of
other Pipeline (page 45) operations.

PDAL Pipeline

We’re going to create a PDAL Pipeline (page 45) to tell PDAL to run our Python script in a
filters.python (page 242) stage.

{

"pipeline": [
{
"filename": "./exercises/python/athletic—fields.laz"
}’
{
"type": "filters.python",
"function": "make_plot",
"module": "anything",
"pdalargs": "{\"filename\":\"./exercises/python/
<histogram.png\"}",
"script": "./exercises/python/histogram.py"
b
{
"type": "writers.null"

13.1. Point Cloud Processing and Analysis with PDAL 373

https://matplotlib.org/

20

21

22

23

24

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: This pipeline is available in your workshop materials in the
./exercises/python/histogram. json file.

Python script

The following Python script will do the actual work of creating the histogram plot with
matplotlib (https://matplotlib.org/). Store it as hi st ogram. py next to the

histogram. json Pipeline (page 45) file above. The script is mostly regular Python except
for the ins and out s arguments to the function — those are special arguments that PDAL
expects to be a dictionary of Numpy dictionaries.

Note: This Python file is available in your workshop materials in the
./exercises/python/histogram.py file.

import numpy
import numpy as np

import matplotlib stuff and make sure to use the
AGG renderer.

import matplotlib

matplotlib.use ('Agg')

import matplotlib.pyplot as plt

import matplotlib.mlab as mlab

This only works for Python 3. Use
StringIO for Python 2.
from io import BytesIO

The make plot function will do all of our work. The
filters.programmable filter expects a function name in the
module that has at least two arguments —- "ins" which

are numpy arrays for each dimension, and the "outs" which
the script can alter/set/adjust to have them updated for
further processing.

def make_plot (ins, outs):

H W HR H H K

figure position and row will increment
figure_position = 1

374 Chapter 13. Workshop

https://matplotlib.org/

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

row = 1
fig = plt.figure(figure_position, figsize=(6, 8.5), dpi=300)

for key in ins:
dimension = ins[key]
ax = fig.add_subplot (len(ins.keys()), 1, row)

histogram the current dimension with 30 bins

n, bins, patches = ax.hist(dimension, 30,
normed=0,
facecolor='grey',
alpha=0.75,
align="mid"',
histtype='stepfilled',
linewidth=None)

Set plot particulars
ax.set_ylabel (key, size=10, rotation='horizontal')

ax.get_xaxis () .set_visible (False)
ax.set_yticklabels('")
ax.set_yticks ((),)

ax.set_xlim(min (dimension), max (dimension))
ax.set_ylim(min(n), max(n))

increment plot position
row = row + 1
figure_position = figure_position + 1

We will save the PNG bytes to a BytesIO instance
and the nwrite that to a file.

output = BytesIO()
plt.savefig (output, format="PNG")

a module global variable, called 'pdalargs' is available
to filters.programmable and filters.predicate modules that,,

—~contains

a dictionary of arguments that can be explicitly passed into
the module by the user. We passed in a filename arg in our,

— pdal pipeline’ call

if 'filename' in pdalargs:

filename = pdalargs|['filename']
else:

filename = 'histogram.png'

open up the filename and write out the
bytes of the PNG stored in the BytesIO instance

13.1. Point Cloud Processing and Analysis with PDAL

375

70

71

72

73

74

75

76

71

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

o

= open (filename, 'wb')
.write (output.getvalue())
o.close ()

O

filters.programmable scripts need to
return True to tell the filter it was successful.
return True

Run pdal pipeline

pdal pipeline ./exercises/python/histogram. json

(pdalworkshop) $ pdal pipeline ./exercises/python/histogram.json

anything:40: MatplotlibDeprecationWarning:

The "normed' kwarg was deprecated in Matplotlib 2.1 and will be removed in 3.1. Use 'density' instead.

anything:47: UserWarning: Attempting to set identical left == right == @ results in singular transformations; automatically expanding.
(pdalworkshop) $fi

376 Chapter 13. Workshop

../../../_images/python-histogram-command.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

13.1. Point Cloud Processing and Analysis with PDAL 377

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Output

Pas

Y|

Z

|

Inten| ity

ReturnN ber

NumberO

ScanDire:ImFIag

EdgeOfFlightLine

turns

|

Classifigatio

=

ScanAngleRank

UserData

PointSoI:eId
GpsTIe

Repd

Green

Blue

378 Chapter 13. Workshop

../../../_images/python-histogram.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Notes

1. writers.null (page 125) simply swallows the output of the pipeline. We don’t need to
write any data.

2. The pdalargs JSON needs to be escaped because a valid Python dictionary entry isn’t
always valid JSON.

Georeferencing

Georeferencing

As discussed in the introduction (page 304), laser returns from a mobile LiDAR
(https://en.wikipedia.org/wiki/Lidar) system must be georeferenced, i.e. placed into a local or
global coordinate system by combining data from the laser and from a GNSS/IMU. As of this
writing, PDAL does not include generic georeferencing tools — this is considered future work.
However, the Optech (http://www.teledyneoptech.com/) csd file format includes both laser
return and GNSS/IMU data in the same file, and the PDAL csd reader includes built in
georeferencing support.

In this section, we will demonstrate how to georeference an Optech
(http://www.teledyneoptech.com/) csd file and reproject that file into a UTM projection.

Note: Optech’s (http://www.teledyneoptech.com/) csd format is just one of several
vendor-specific data formats PDAL supports; we also support data files directly from RIEGL
(http://riegl.com/) sensors and from several project-specific government platforms.

Exercise

The file S1CI_csd_004.csd contains airborne data from an Optech
(http://www.teledyneoptech.com/) sensor. Without georeferencing these points, they would be
impossible to interpret — once they are georeferenced, we will be able to inspect and analyze
these points like any other point cloud.

In addition to georeferencing, we are going to make two other tweaks to our point cloud:

* The point cloud is, by default, in WGS84
(https://en.wikipedia.org/wiki/Geodetic_datum), but we will reproject these points to a
UTM
(https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system)
coordinate system for visualization purposes.

13.1. Point Cloud Processing and Analysis with PDAL 379

https://en.wikipedia.org/wiki/Lidar
http://www.teledyneoptech.com/
http://www.teledyneoptech.com/
http://www.teledyneoptech.com/
http://riegl.com/
http://www.teledyneoptech.com/
https://en.wikipedia.org/wiki/Geodetic_datum
https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

* Because these are raw data coming from the sensor, these data are noisy. In particular,
there are a few points very close to the sensor which were probably caused by air returns
or laser light reflecting off of part of the airplane or sensor. These points have very high
intensity values, which will screw up our visualization. We will use the filters.range
(page 214) PDAL filter to drop all points with very high intensity values.

Note: These data were provided by Dr. Craig Glennie and were collected by NCALM
(http://ncalm.cive.uh.edu/), the National Center for Airborne Laser Mapping. The collect area

is southwest of Austin, TX.

Command

Invoke the following command, substituting accordingly, into your ¢ Conda Shell‘:

pdal translate \
./exercises/georeferencing/S1C1l_csd_004.csd
./exercises/georeferencing/S1Cl_csd_004.1laz
reprojection range \
——filters.reprojection.out_srs="EPSG:32614"
——filters.range.limits="Intensity[0:500]"

pdal translate ©
./exercises/georeferencing/S1Cl_csd_004.csd
./exercises/georeferencing/S1Cl_csd_004.1laz
reprojection range
——filters.reprojection.out_srs="EPSG:32614"
——filters.range.limits="Intensity[0:500]"

(pdalworkshop) $ pdal translate \
./exercises/georeferencing/5S1C1_csd_004.csd \
./exercises/georeferencing/S1C1_csd_004.1az \
reprojection range \
--filters.reprojection.out_srs="EPSG:32614" \
--filters.range.limits="Intensity[@:500]"
(pdalworkshop) $

IVATRVATRY SN N

Visualization

View your georeferenced point cloud in http://plas.io.

380

Chapter 13

. Workshop

http://ncalm.cive.uh.edu/
../../../_images/georeferencing-run-command.png
http://plas.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

' | X plas.io x Pete.
€ > C A [plasio Qe O =
i Apps [l News [Ld Work [School [L Finance [l GRU (11 DOC (1] PDAL Paper Toread [Tournament t directing [7] Save to Mendeley ' SPOT Shared Page

FILE ~
CHOOSE DATA TO DISPLAY]
Browse -
Open
DENSITY °
|
DATA SET
Name $1C1_csd_004.las
File Version 12
Compressed? No
Total Points 7,417,004 (2,472,335)
Point Format ID 3
Point Record Size 34
FOR SCALE OBJECTS]

WebGL 1.8 (OpenGL ES 2.0 Chr

Fig. 13.7: Our airborne laser point cloud after georeferencing, reprojection, and intensity filter-
ing.

13.1. Point Cloud Processing and Analysis with PDAL 381

../../../_images/georeference-plasio.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Batch Processing

Batch Processing

PDAL doesn’t handle matching multiple file inputs except for glob handling for merge
operations, but does allow for command line substitution parameters to make batch processing
simpler, substitutions. Substitions work with both Pipeline (page 45) operations as well as with
other applications such as translate (page 38).

Operating system variations

How substitutions are passed generally depends on the operating system and tools available. In
the unix/linux environments, this is primarily using the find and Is programs to get lists of files
(either with directories or just filenames) and the xargs or parallel program to pass those files
to the pdal application (although -exec with find can also be used). These tools are available
in the docker environment if you are running PDAL under docker. They are also available
under Windows one installs Cygwin or MinGW. They are also available if Git for Windows is
installed. They are also available as win32 command line programs installed from the GNU
Findutils (https://www.gnu.org/software/findutils/findutils.html). They are available for
MacOS and Linux.

Windows native tools

Subtitions can be handled directly in windows using PowerShell syntax.

While there are a number of ways to generate lists of files, the Get-Childltem is used here,
along with the foreach option to pass each separate filepath to the pdal application.

Example - Batch compression of LAS files to LAZ - PowerShell:

To compress a series of LAS files in one directory into compressed LAZ files in another
directory, the PowerShell syntax would be:

Get—-ChildItem .\DIR1l\x.las | foreach {pdal translate —-i .\DIRI\S(S_.

—~BaseName) .las
-0 .\DIR2\$ (S .BaseName) .laz}

Note the use of the $($_.BaseName) syntax for the files passed. This option on the $($_)
shortcut for the full filename, removes the directory and the extension on the file and allows the
user to set the path and extension manually.

382 Chapter 13. Workshop

https://www.gnu.org/software/findutils/findutils.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Example - Parallel Batch compression of LAS files to LAZ - PowerShell:

This use of the PowerShell syntax doesn’t allow a user to execute more than one process at a
time. There is a free download of the xargs program that provides parallel execution available
at http://www.pirosa.co.uk/demo/wxargs/ppx2.exe. For this tool, the file names are passed with
using the {/ syntax.

Get-ChildItem .\dirl\ | Select-Object -ExpandProperty BaseName "
| .\ppx2.exe -P 3 pdal translate —-i ".\dirl\{}.las" -o ".\dir2\{}.laz

"
—

Example - Batch compression of LAS files to LAZ - Bash:

To compress a series of LAS files in one directory into compressed LAZ files in another
directory, the Bash syntax would be:

ls ./dirl/=*.las | parallel -I{} \
pdal translate -1 ./dirl/{/.}.las -o ./dir2/{/.}.laz

In Parallel, then {/.} syntax means strip the directory and the extension and just use the
basename of the file. This allows you to easily change the output format and the location.

Example - Parallel Batch compression of LAS files to LAZ - Bash:

Parallel, as its name implies, allows paralell operations. Adding the -j syntax indicates the
number simultaneous jobs to run

ls ./dirl/x.las | parallel -I{} -3 4 \
pdal translate -i ./dirl/{/.}.las -o ./dir2/{/.}.laz

Exercise - Pipeline Substitions:

For the most flexibility, pipelines are used to apply a series of opertations to a file (or group of
files). In this excersise, we build on the Generating a DTM (page 355) pipeline example, but
run this pipline over 4 files and reproject, calculate a bare earth using the filters.smrf

(page 185) filter, remove those points that aren’t bare earth with filters.range (page 214) and
then write the output using the writers.gdal (page 112).

The pipeline we are using is:

{

"pipeline": [

13.1. Point Cloud Processing and Analysis with PDAL 383

http://www.pirosa.co.uk/demo/wxargs/ppx2.exe

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"type":"readers.las"
by
{
"type": "filters.reprojection"
}I
{
"type": "filters.smrf"

"type":"filters.range",
"limits":"Classification[2:2]"

"gdaldriver":"GTiff",
"output_type":"idw",
"resolution" :"2.0",
"type": "writers.gdal"

You might have spotted that this pipeline doesn’t have any input or output file references, or a
value for the output spatial reference. We will be adding those at the command line, not within
the actual pipeline and using the substitutions syntax to do this.

PS ./exercises/batch> Get-ChildItem ./exercises/batch/
—source/x.laz | *

foreach {pdal pipeline ./exercises/batch/batch_srs_gdal.
—~Jjson
——-readers.las.filename=./source/$ ($_.BaseName) .laz
—-—writers.gdal.filename=./dtm/$ ($_.BaseName) .tif *
——filters.reprojection.in_srs=epsg:3794 ~»

——filters.reprojection.in_srs=epsg:32733}

A

ls ./exercises/batch_processing/source/*.laz | \
parallel -I{} pdal pipeline ./exercises/batch_processing/
—batch_srs_gdal.json \
——readers.las.filename={} \
——writers.gdal.filename=./exercises/batch_processing/dtm{/.
—}.tif \
——filters.reprojection.in_srs=epsg:3794 \
——filters.reprojection.out_srs=epsg:32733

Once you have your dtms created with pdal, combine them to a single file with:

384 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

gdalbuildvrt ./exercises/batch_processing/dtm.vrt ./exercises/batch_
wprocessing/dtmx.tif

You can then visualize the vrt with ggis. Add the vrt twice, and set the properties of the lower
layer to hillshade. Set the upper layer to Singleband PseudoColor and choose a pleasing color
ramp. Then set the transparency of the upper layer to 50% and you’ll get a nice display of the
terrain.

- -

> 2 y -
; Hev
1

1.&_. __a-u' .ﬁﬂ} %

13.1.5 Final Project

The final project brings together a number of PDAL processing workflow operations into a
single effort It builds upon the exercises to enable you to use the capabilities of PDAL in a

13.1. Point Cloud Processing and Analysis with PDAL 385

../../../_images/batch-processing-dtm-qgis.png

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

coherent processing strategy, and it will give you ideas about how to orchestrate PDAL in the
context of larger data processing scenarios.

Given the following pipeline for fetching the data, complete the rest of the tasks:

{
"pipeline": [

{

"type": "readers.ept",
"filename":"http://na-c.entwine.io/dublin/",
"bounds":" ([-697041.0, -696241.0], [7045398.0, 7046086.

01, [-40, 4007)"

}l

{
"type": "writers.las",
"compression": "true",
"minor_version": "2",
"dataformat_id": "O",
"filename":"st-stephens.laz"

Read data from an EPT resource using readers.ept (page 55) (See Entwine (page 319))

Thin it by 1.0 meter spacing using filters.sample (page 216) (See Thinning (page 343))

Filter out noise using filters.outlier (page 174) (See Removing noise (page 335))

Classify ground points using filters.smrf (page 185) (See Identifying ground (page 349))

Compute height above ground using filters.hag

Generate a digital terrain model (DTM) using writers.gdal (page 112) (See Generating a
DTM (page 355))

* Generate a average vegetative height model using writers.gdal (page 112)

Note: You should review specific Exercises (page 309) for specifics how to achieve each task.

13.1.6 Notes

Notes

386 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

13.1. Point Cloud Processing and Analysis with PDAL 387

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Notes

388 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Notes

13.1. Point Cloud Processing and Analysis with PDAL 389

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Notes

390 Chapter 13. Workshop

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Notes

13.1. Point Cloud Processing and Analysis with PDAL 391

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Notes

392 Chapter 13. Workshop

CHAPTER
FOURTEEN

DEVELOPMENT

14.1 Development

Developer documentation, such as how to update the docs, where the test frameworks are, who
develops the software, and conventions to use when developing new code can be found in this
section.

Note: Users looking for documentation on how to use PDAL’s command line applications
should look /ere (page 25) and users looking to use the PDAL API in their own applications
should look /ere (page 465).

14.1.1 PDAL Architecture Overview

Author Andrew Bell
Contact andrew @hobu.co
Date 5/15/2016

PDAL is a set of applications and library to facilitate translation of point cloud data between
various formats. In addition, it provides some facilities for transformation of data between
various geometric projections and can calculate some statistical, boundary and density data.
PDAL also provides point classification algorithms. PDAL provides an API that can be used
by programmers for integration into their own projects or to allow extension of existing
capabilities.

The PDAL model

PDAL reads data from a set of input sources using format-specific readers. Point data can be
passed through various filters that transform data or create metadata. If desired, points can be
written to an output stream using a format-specific writer. PDAL can merge data from various

393

mailto:andrew@hobu.co

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

input sources into a single output source, preserving attribute data where supported by the
input and output formats.

Reader Filter Writer
Merge Filter
Reader Filter Writer
Readers: Filters: _ Writers:
Output Filters:
Colorization LAS/LAZ
BPF .
: Crop Chipper NITF
Icebridge - "
LASILAZ Decimation Splitter Oracle
HexBin Postgres
NITF
PCLBIlock SBET
Oracle Predicat -
Postgres redicate SQLite
QFIT Prograr_nmr_a\ble Text
SBET Repgi]etctlon
SQLite as

The above diagram shows a possible arrangement of PDAL readers, filters and writers, all of
which are known as stages. Any merge operation or filter may be placed after any reader.
Output filters are distinct from other filters only in that they may create more than one set of
points to be further filtered or written. The arrangement of readers, filters and writers is called
a PDAL pipeline. Pipelines can be specified using JSON as detailed later.

Extending PDAL

PDAL is simple to extend by implementing subclasses of existing stages. All processing in
PDAL is completely synchronous. No parallel processing occurs, eliminating locking or other
concurrency issues. Understanding of several auxiliary classes is necessary to effectively create
a new stage.

Dimension

Point cloud formats support various data elements. In order to be useful, all formats must
provide some notion of location for points (X, Y and perhaps Z), but beyond that, the data
collected in formats may or may not have common data fields. Some formats predefine the
elements that make up a point. Other formats provide this information in a header or preamble.

394 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

PDAL calls each of the elements that make up a point a dimension. PDAL predefines the
dimensions that are in common use by the formats that it currently supports. Readers may
register their use of a predefined dimension or may have PDAL create a dimension with a name
and type as requested. Dimensions are described in a JSON file, Dimension.json.

PDAL has a default type (Double, Float, Signed32, etc.) for each of its predefined dimensions
which is believed to be sufficient to accurately hold the necessary data. Only when the default
data type is deemed insufficient should a request be made to “upgrade” a storage datatype.
There is no simple facility to “downsize” a dimension type to save memory, though it can be
done by creating a custom PointLayout object. Dimension.json can be examined to determine
the default storage type of each predefined dimension. In most cases knowledge of the storage
data type for a dimension isn’t required. PDAL properly converts data to and from the internal
storage type transparently. Invalid conversions raise an exception.

When a storage type is explicitly requested for a dimension, PDAL examines the existing
storage type and requested type and chooses the storage type so that it can hold both types. In
some cases this results in a storage type different from either the existing or requested storage
type. For instance, if the current storage type is a 16 bit signed integer (Signed16) and the
requested type is a 16 bit unsigned integer (Unsigned16), PDAL will use a 32 bit signed integer
as the storage type for the dimension so that both 16 bit storage types can be successfully
accommodated.

Point Layout

PDAL stores the dimension information in a point layout structure (PointLayout object). It
stores information about the physical layout of data of each point in memory and also stores
the type and name of each dimension.

Point Table

PDAL stores points in what is called a point table (PointTable object). Each point table has an
associated point layout describing its format. All points in a single point table have the same
dimensions and all operations on a PDAL pipeline make use of a single point table. In addition
to storing points, a point table also stores pipeline metadata that may be created as pipeline
stages are executed. Most functions receive a PointTableRef object, which refers to the active
point table. A PointTableRef can be stored or copied cheaply.

A subclass of PointTable called StreamingPointTable exists to allow a pipeline to run without
loading all points in memory. A StreamingPointTable holds a fixed number of points. Some
filters can’t operate in streaming mode and an attempt to run a pipeline with a stage that
doesn’t support streaming will raise an exception.

14.1. Development 395

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Point View

A point view (PointView object) stores references to points. Storage and retrieval of points is
done through a point view rather than directly through a point table. Point data is accessed
from a point view through a point ID (type Pointld), which is an integer value. The first point
reference in a point view has a point ID of 0, the second has a point ID of 1, the third has a
point ID of 2 and so on. There are no null point references in a point view. The size of a point
view is the number of point references contained in the view. A point view acts like a
self-expanding array or vector of point references, but it is always full. For example, one can’t
set the field value of point with a Pointld of 9 unless there already exist at least 8 point
references in the point view.

Point references can be copied from one point view to another by appending an existing
reference to a destination point view. The point ID of the appended point in the destination
view may be different than the point ID of the same point in the source view. The point ID of an
appended point reference is the same as the size of the point view after the operation. Note that
appending a point reference does not create a new point. Rather, it creates another reference to
an existing point. There are currently no built-in facilities for creating copies of points.

Point Reference

Some functions take a reference to a single point (PointRef object). In streaming mode, stages
implement the processOne() function which operates on a point reference instead of a point
view.

Making a Stage (Reader, Filter or Writer):

All stages (Stage object) share a common interface, though readers, filters and writers each
have a simplified interface if the generic stage interface is more complex than necessary. One
should create a new stage by creating a subclass of reader (Reader object), filter (Filter object)
or writer (Writer object). When a pipeline is made, each stage is created using its default
constructor.

When a pipeline is started, each of its stages is processed in two distinct steps. First, all stages
are prepared.

Stage Preparation

Preparation of a stage is done by calling the prepare() function of the stage at the end of the
pipeline. prepare() executes the following private virtual functions calls, none of which need to
be implemented in a stage unless desired. Each stage is guaranteed to be prepared after all
stages that precede it in the pipeline.

396 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

1. void addArgs(ProgramArgs& args)

Stages can accept various options to control processing. These options can be
declared and bound to variables in this function. When arguments are added,
the stage also provides a description and optionally a default value for the
argument.

2. void initialize() OR void initialize(PointTableRef)

Some stages, particularly readers, may need to do things such as open files to
extract header information before the next step in processing. Other general
processing that needs to take place before any stage is executed should occur
at this time. If the initialization requires knowledge of the point table,
implement the function that accepts one, otherwise implement the
no-argument version. Whether to place initialization code at this step or in
prepared() or ready() (see below) is a judgement call, but detection of errors
earlier in the process allows faster termination of a command. Files opened in
this step should also be closed before returning.

3. void addDimensions(PointLayoutPtr layout)

This method allows stages to inform a point table’s layout of the dimensions
that it would like as part of the record of each point. Usually, only readers add
dimensions to a point table, but there is no prohibition on filters or writers
from adding dimensions if necessary. Dimensions should not be added to the
layout outside of this method.

4. void prepared(PointTableRef)

Called after dimensions are added. It can be used to verify state and raise
exceptions before stage execution.

Stage Execution

After all stages are prepared, processing continues with the execution of each stage by calling
execute(). Each stage will be executed only after all stages preceding it in a pipeline have been
executed. A stage is executed by invoking the following private virtual methods. It is important
to note that ready() and done() are called only once for each stage while run() is called once for
each point view to be processed by the stage.

1. void ready(PointTablePtr table)

This function allows preprocessing to be performed prior to actual processing
of the points in a point view. For example, filters may initialize internal data
structures or libraries, readers may connect to databases and writers may write
a file header. If there is a choice between performing operations in the
preparation stage (in the initialize() method) or the execution stage (in
ready()), prefer to defer the operation until this point.

14.1. Development 397

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

2. PointViewSet run(PointViewPtr buf)

This is the method in which processing of individual points occurs. One might
read points into the view, transform point values in some way, or distribute the
point references in the input view into numerous output views. This method is
called once for each point view passed to the stage.

3. void done(PointTablePtr table)

This function allows a stage to clean up resources not released by a stage’s
destructor. It also allows other execution of termination functions, such a
closing of databases, writing file footers, rewriting headers or closing or
renaming files.

Streaming Stage Execution

PDAL normally processes all points through each stage before passing the points to the next
stage. This means that all point data is held in memory during processing. There are some
situations that may make this undesirable. As an alternative, PDAL allows execution of data
with a point table that contains a fixed number of points (StreamPointTable). When a
StreamPointTable is passed to the execute() function, the private run() function detailed above
isn’t called, and instead processOne() is called for each point. If a StreamPointTable is passed
to execute() but a pipeline stage doesn’t implement processOne(), an exception is thrown.

bool processOne(PointRef& ref)

This method allows processing of a single point. A reader will typically read a
point from an input source. When a reader returns ‘false’ from this function, it
indicates that there are no more points to be read. When a filter returns ‘false’ from
this funciton, it indicates that the point just processed should be filtered out and not
passed to subsequent stages for processing.

Implementing a Reader

A reader is a stage that takes input from a point clould format supported by PDAL and loads
points into a point table through a point view.

A reader needs to register or assign those dimensions that it will reference when adding point
data to the point table. Dimensions that are predefined in PDAL can be registered by using the
point table’s registerDim() method. Dimensions that are not predefined can be added using
assignDim(). If dimensions are determined as named entities from a point cloud source, it may
not be known whether the dimensions are predefined or not. In this case the function
registerOrAssignDim() can be used. When a dimension is assigned, rather than registered, the
reader needs to inform PDAL of the type of the variable using the enumeration

Dimension:: Type.

398 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

In this example, the reader informs the point table’s layout that it will reference the dimensions
X,Y and Z.

void Reader::addDimensions (PointLayoutPtr layout)
{
layout—->registerDim(Dimension: :Id: :X);
layout-—>registerDim(Dimension::Id::Y);
layout—->registerDim(Dimension: :Id::Z);

Here a reader determines dimensions from an input source and registers or assigns them. All of
the input dimension values are in this case double precision floating point.

void Reader::addDimensions (PointLayoutPtr layout)

{

FileHeader header;

for (auto di = header.names.begin(), di != header.names.end();
—++di)
{
std::string dimName = =*di;
Dimension::Id id = layout->registerOrAssignDim (dimName,

Dimension: :Type: :Double) ;

If a reader implements initialize() and opens a source file during the function, the file should be
closed again before exiting the function to ensure that file handles aren’t exhausted when
processing a large number of files.

Readers should use the ready() function to reset the input data to a state where the first point
can be read from the source. The done() function should be used to free resources or reset the
state initialized in ready().

Readers should implement a function, read(), that will place the data from the input source into
the provided point view:

point_count_t read(PointViewPtr view, point_count_t count)

The reader should read at most ‘count’ points from the input source and place
them in the view. The reader must keep track of its current position in the input
source and points should be read until no points remain or ‘count’ points have been
added to the view. The current location in the input source is typically tracked with
a integer variable called the index.

As each point is read from the input source, it must be placed at the end of the
point view. The ID of the end of the point view can be determined by calling size()
function of the point view. read() should return the number of points read by
during the function call.

14.1. Development 399

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

point_count_t MyFormat::read(PointViewPtr view, point_count_
—t count)

{

// Determine the number of points remaining in the
—input.
point_count_t remainingInput = m_totalNumPts - m_index;

// Determine the number of points to read.
count = std::min(count, remainingInput);

// Determine the ID of the next point in the point view
PointId nextId = view->size();

// Determine the current input position.
auto pos = m_pointSize x m_index;

point_count_t remaining = count;
while (remaining-—-)
{

double x, y, z;

// Read X, Y and Z from input source.
x = m_file.read<double> (pos);

pos += sizeof (double);

y = m_file.read<double> (pos) ;

pos += sizeof (double);

z = m_file.read<double> (pos) ;

pos += sizeof (double);

// Set X, Y and Z into the pointView.

view—->setField (Dimension: :Id::X, nextId, Xx);
view—>setField(Dimension::Id::Y, nextId, vy);
view—->setField (Dimension: :Id::Z, nextId, z);

nextId++;
}

m_index += count;
return count;

Note that we don’t read more points than requested, we don’t read past the end of
the input stream and we keep track of our location in the input so that subsequent
calls to read() will result in all points being read.

Here’s the same function written so that streaming can be supported:

400

Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

point_count_t MyFormat::read(PointViewPtr view, point_count_
—t count)
{

// Determine the number of points remaining in the
—input.

point_count_t remainingInput = m_totalNumPts - m_index;

// Determine the number of points to read.
count = std::min(count, remainingInput);

// Determine the ID of the next point in the point view
PointId nextId = view->size () ;

// Determine the current input position.
auto pos = m_pointSize » m_index;

point_count_t remaining = count;
while (remaining-—-)
{

PointRef point (view->point (nextId)) ;

processOne (point) ;
nextId++;
}
m_index += count;
return count;

bool MyFormat::processOne (PointRef& point)

{
double x, y, z;

// Read X, Y and Z from input source.
x = m_file.read<double> (pos) ;

pos += sizeof (double);

y = m_file.read<double> (pos) ;

pos += sizeof (double);

z = m_file.read<double> (pos);

pos += sizeof (double);

point.setField (Dimension: :Id::X, x);
point.setField (Dimension::Id::Y, Vy);
point.setField (Dimension::Id::Z, z);
return m_file.ok () ;

14.1. Development 401

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Implementing a Filter

A filter is a stage that allows processing of data after it has been read into a pipeline’s point
table. In many filters, the only function that need be implemented is filter(), a simplified
version of the stage’s run() method whose input and output is a point view provided by the
previous stage:

void filter(PointViewPtr view)

One should implement filter() instead of run() if its interface is sufficient. The
expectation is that a filter will iterate through the points currently in the point view
and apply some transformation or gather some data to be output as pipeline
metadata.

Here as an example is the actual filter function from the reprojection filter:

void Reprojection::filter (PointViewPtr view)
{
for (PointId id = 0; id < view->size(); ++id)
{
double x = view->getFieldAs<double>
< (Dimension: :Id::X, 1id);
double y = view—->getFieldAs<double>
< (Dimension: :Id::Y, id);
double z = view->getFieldAs<double>
< (Dimension: :Id::Z, id);

transform(x, y, z);

view—->setField (Dimension: :Id::X, 1id, x);
view—>setField(Dimension::Id::Y, id, vy);
view—->setField (Dimension::Id::Z, id, z);

The filter simply loops through the points, retrieving the X, Y and Z values of each
point, transforms those value using a reprojection algorithm and then stores the
transformed values in the point table using the point view’s setField() function.

A filter may need to use the run() function instead of filter(), typically because it
needs to create multiple output point views from a single input view. The
following example puts every other input point into one of two output point views:

PointViewSet Alternator::run (PointViewPtr view)
{

PointViewSet viewSet;

PointViewPtr even = view();

PointViewPtr odd = view();

402

Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

viewSet.insert (even) ;
viewSet.insert (odd) ;
for (PointId idx = 0; idx < view—->size(); ++idx)
{
PointViewPtr out = idx % 2 ? even : odd;
out->appendPoint (xview.get (), 1idx);
}

return viewSet;

Implementing a Writer:

Analogous to the filter() method in a filter is the write() method of a writer. This function is
usually the appropriate one to override when implementing a writer — it would be unusual to
need to implement run(). A typical writer will open its output file when ready() is called, write
individual points in write() and close the file in done().

Like a filter, a writer may receive multiple point views during processing of a pipeline. This
will result in the write() function being called once for each of the input point views. Writers
may produce a separate output file for each input point view or may produce a single output
file. The documentation should clearly state this behavior. Placing a merge filter in front of a
writer in the pipeline will make sure that a single point view is passed to the writer.

As new writers are created, developers should try to make sure that they behave reasonably if
passed multiple point views — they correctly handle write() being called multiple times after a
single call to ready().

void write (const PointViewPtr view)

{

ostream& out = *m_out;

for (PointId id = 0; id < view—>size(); ++id)
{

out << setw(l0) << view—>getFieldAs<double> (Dimension::Id::X,

out << setw(10) << view—>getFieldAs<double> (Dimension::Id::Y,
out << setw(10) << view->getFieldAs<double> (Dimension::Id::Z,
< id);

}

bool processOne (PointRefé& point)

{

out << setw(l0) << point.getFieldAs<double> (Dimension::Id::X);

14.1. Development 403

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

out << setw(10) << point.getFieldAs<double> (Dimension::Id::Y);
out << setw(10) << point.getFieldAs<double> (Dimension::Id::Z);

14.1.2 Compilation

This section describes how to build and install PDAL under Windows, Linux, and Mac.
See also:

Download (page 13) contains links to installable binaries for Windows, OSX, and RHEL
Linux systems.

Contents:

Unix Compilation

PDAL comes with support for building with CMake (https://cmake.org). PDAL requires at
least version 3.5 of CMake. CMake is a cross-platform meta-build system that provides a
unified system for building applications on multiple platforms with various build tools. CMake
has generators (https://cmake.org/cmake/help/v3.5/manual/cmake-generators.7.html) for many
build tools, though PDAL has been tested only with Ninja (https://ninja-build.org/) and GNU
Makefiles (https://www.gnu.org/software/make/manual/make.html) on Unix/OSX. Ninja builds
PDAL faster, so the following instructions use that build tool, though building with GNU
Makefiles works similarly (simply replace “ninja” with “make” when running the build tool).

Dependencies

Building PDAL successfully depends on having other libraries configured and installed. These
dependencies (page 411) can be built from source or can be installed via a packaging system
(apt (https://help.ubuntu.com/lIts/serverguide/apt.html) works well on Ubuntu and
Debian-based Linux systems. Conda (https://conda.io/en/latest/) works well on most systems.
Some have had success with brew (https://brew.sh/) on OSX systems.) Often, the only package
that needs to be installed prior to building PDAL is GDAL. Installing a GDAL package will
normally install other PDAL dependencies automatically.

$ apt install libgdal-dev
OR
$ conda install gdal

OR

404 Chapter 14. Development

https://cmake.org
https://cmake.org/cmake/help/v3.5/manual/cmake-generators.7.html
https://ninja-build.org/
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://help.ubuntu.com/lts/serverguide/apt.html
https://conda.io/en/latest/
https://brew.sh/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

$ brew install gdal

Using Ninja on Linux or OSX
Get the source code

PDAL can be cloned from GitHub (page 14) or you can download a release bundle (page 13)

Prepare a build directory

CMake allows you to generate different builders for a project. Here we’re using Mac OSX, but
the procedure and output are nearly identical on Linux distributions.

$ cd PDAL
S mkdir build
S cd build

Run CMake

Running CMake uses the specified generator to create an environment suitable for building
PDAL with the requested tool. (Ninja in this case).

S cmake -G Ninja
—— Numpy output: /usr/lib/python2.7/dist-packages/numpy/core/include
1.13.3

—— Could NOT find LIBEXECINFO (missing: LIBEXECINFO_LIBRARY)

—— Could NOT find LIBUNWIND (missing: LIBUNWIND_ LIBRARY LIBUNWIND__
—~INCLUDE_DIR)

—— The following features have been enabled:

x PostgreSQL PointCloud plugin, read/write PostgreSQL PointCloud,,
—~objects

* Python plugin, add features that depend on python

* Unit tests, PDAL unit tests

—— The following OPTIONAL packages have been found:
* PkgConfig

* LibXml2
* Curl

14.1. Development 405

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

—— The following REQUIRED packages have been found:

* GDAL (required version >= 2.2.0)
Provides general purpose raster, vector, and reference system
—support

—— The following RECOMMENDED packages have not been found:

* LASzip (required version >= 3.1)
Provides LASzip compression

—— Configuring done
—-— Generating done
—— Build files have been written to: /home/foo/pdal/build

Issue the ninja command

If cmake runs to completion (reports that build files have been written), you can run Ninja to
build PDAL.

$ ninja
If no errors are reported, Ninja will have created the pdal program in the bin directory. A set
of necessary support libraries will have been created in the 11b directory.

$ 1ls bin/pdal
bin/pdal

$ 1ls lib/libpdalcpp*
lib/libpdalcpp.8.dylib
lib/libpdalcpp.dylib
lib/libpdalcpp.9.0.0.dylib

Checking the build and running PDAL tests

You can quickly check that PDAL has built properly by running the pdal info command.

$ bin/pdal info ../test/data/las/autzen_trim.las
{

"filename": "../test/data/las/autzen_trim.las",
"pdal_version": "1.8.0 (git-version: c39%e62)",
"stats":

406 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"bbox":
{

"EPSG:4326":

{
"bbox":

{

"maxx":
"maxy":
"maxz":
"minx":
"miny":
"minz":

ty

-123.0689038,
44.0515451,
158.65144s8,
-123.0734481,
44.04990077,
123.828048

CMake will normally build a set of tests that can be used to verify that PDAL executes most
functions properly. You can run these tests yourself if desired, though it’s not typically

necessary.

S ctest

Test project /Users/foo/pdal.master/build

Start 13
1/97 Test #1:
—0.23 sec

Start 2:
2/97 Test #2:
—~0.12 sec

Start 3:
3/97 Test #3:
—~3.52 sec

Start 4:

4/97 Test #4:
—~0.31 sec

93/96 Test #93:
—~0.03 sec
Start 94:
94/96 Test #94:
—~0.05 sec
Start 95:
95/96 Test #95:
—0.04 sec
Start 96:
96/96 Test #96:
—~0.04 sec

pdal_filters_pcl_block_test

pdal filters_pcl_block test

pdal_ filters_icp_test

pdal_filters_icp_test

pdal_filters_python_test

pdal_ filters_python_test

pdal_io_numpy_test

pdal_io numpy_testciiiiiiiiee...

pdal_io_ilvis2_metadata_test

pdal_io_ilvis2_reader_metadata_test
pdal_io_ilvis2_reader_metadata_test

xml_ schema_test

xml schema_ _testttt eenen.

pdal_io_ilvis2_test

pdal_io_ilvis2_testiiiiiiea...

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

14.1. Development

407

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

100% tests passed, 0 tests failed out of 96

Total Test time (real) = 39.54 sec
Failed tests may not indicate problems other than a lack of support for some feature on your

system. For example, tests for database drivers will fail if the database isn’t installed or
configured properly.

Install PDAL

PDAL can be installed to the default location (usually subdirectories of /usr/local) using Ninja.

$ ninja install

Building Under Windows

Author Howard Butler
Contact howard at hobu.co

Date 03/20/2019

Note: Conda (page 16) contains a pre-built up-to-date 64 bit Windows binary. It is
fully-featured, and if you do not need anything custom, it is likely the fastest way to get going.

Introduction

Pre-built binary packages for Windows are available via Conda (page 16) (64-bit version), and
all of the prerequisites required for compilation of a fully featured build are also available via
that packaging system. This document assumes you will be using Conda Forge as your base,
and anything more advanced is beyond the scope of the document.

Note: The AppVeyor build system uses the PDAL project’s configuration on the Conda Forge
system. It contains a rich resource of known working examples. See
https://github.com/PDAL/PDAL/blob/master/appveyor.yml and
https://github.com/PDAL/PDAL/tree/master/scripts/appveyor for inspiration.

408 Chapter 14. Development

https://github.com/PDAL/PDAL/blob/master/appveyor.yml
https://github.com/PDAL/PDAL/tree/master/scripts/appveyor

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Required Compiler

PDAL is known to compile on Visual Studio 2015
(https://www.visualstudio.com/vs/older-downloads/), and 2013 might work with some source
tree adjustments. PDAL makes heavy use of C++11, and a compiler with good support for
those features is required.

Prerequisite Libraries

PDAL uses the AppVeyor (https://ci.appveyor.com/project/hobu/pdal/history) continuous
integration platform for building and testing itself on Windows. The configuration that PDAL
uses is valuable raw materials for configuring your own environment because the PDAL team
must keep it up to date with both the Conda (page 16) environment and the Microsoft compiler
situation.

You can see the current AppVeyor configuration at
https://github.com/PDAL/PDAL/blob/master/appveyor.yml The most interesting bits are the
install section, the config.cmd, and the build. cmd scripts. The AppVeyor
configuration already has Miniconda installed, and the config. cmd script installs all of
PDAL’s prerequisites via the command line.

conda install geotiff laszip nitro curl *
gdal pcl cmake eigen ninja libgdal
zstd numpy xz libxml2 laz-perf ghull *
sglite hdf5 tiledb conda-build ninja -y

Note: The package list here might change over time. The canonnical location to learn the
prerequisite list for PDAL is the scripts/appveyor/test/build. cmd file in PDAL’s
source tree.

Fetching the Source

Get the source code for PDAL. Presumably you have GitHub for Windows
(https://desktop.github.com/) or something like it. Run a “git shell” and clone the repository
into the directory of your choice.

c:\dev> git clone https://github.com/PDAL/PDAL.git

Switch to the -maintenance branch.

c:\dev> git checkout 1.9-maintenance

14.1. Development 409

https://www.visualstudio.com/vs/older-downloads/
https://ci.appveyor.com/project/hobu/pdal/history
https://github.com/PDAL/PDAL/blob/master/appveyor.yml
https://desktop.github.com/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: PDAL’s active development branch is master, and you are welcome to
build it, but is not as stable as the major-versioned release branches are likely to be.

Configuration

PDAL uses CMake (http://www.cmake.org) for its build configuration. You will need to install
CMake and have it available on your path to configure PDAL.

Invoke your cmake command to configure the PDAL.

cmake -G "NMake Makefiles"
A fully-featured build will require more specification of libraries, enabled features, and their
locations. There are two places in the source tree for inspiration on this topic.

1. The AppVeyor build configuration
https://github.com/PDAL/PDAL/blob/master/scripts/appveyor/config.cmd#L.26

2. Howard Butler’s example build configuration
https://github.com/PDAL/PDAL/blob/master/scripts/conda/win64.bat

Note: Placing your command in a .bat file will make for easy reuse.

Building

If you chose NMake Makefiles as your CMake generator, you can invoke the build by
calling nmake:

nmake /f Makefile

If you chose “Visual Studio 14 Win64” as your CMake generator, open PDAL . s1n and chose
your configuration to build.

Running

After you’ve built the tree, you can run pdal . exe by issuing it

c:\dev\pdal\bin\pdal.exe

410 Chapter 14. Development

http://www.cmake.org
https://github.com/PDAL/PDAL/blob/master/scripts/appveyor/config.cmd#L26
https://github.com/PDAL/PDAL/blob/master/scripts/conda/win64.bat

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Note: You may need to have your Conda environment active to enable access to PDAL’s
dependencies.

Dependencies

PDAL depends on a number of libraries to do its work. You should make sure those
dependencies are installed on your system before installing PDAL or use a packaging system
that will automatically ensure that prerequisites are satisified. Packaging system such as apt
(https://help.ubuntu.com/lIts/serverguide/apt.html) or Conda (https://conda.io/en/latest/) can be
used to install dependencies on your system.

Required Dependencies
GDAL (2.2+)

PDAL uses GDAL for spatial reference system description manipulation, and image reading
supporting for the NITF driver, and writers.oci (page 126) support. In conjunction with
GeoTIFF (http://trac.osgeo.org/geotiff), GDAL is used to convert GeoTIFF keys and OGC
WKT SRS description strings into formats required by specific drivers.

Source: https://github.com/0SGeo/gdal
Conda: https://anaconda.org/conda-forge/gdal

GeoTIFF (1.3+)

PDAL uses GeoTIFF in conjunction with GDAL for GeoTIFF key support in the LAS driver.
GeoTIFF is typically a dependency of GDAL, so installing GDAL from a package will
generally install GeoTIFF as well.

Source: https://github.com/0SGeo/libgeotiff
Conda: https://anaconda.org/conda-forge/geotiff

Note: GDAL surreptitiously embeds a copy of GeoTIFF (http://trac.osgeo.org/geotiff) in its
library build but there is no way for you to know this. In addition to embedding libgeotiff, it
also strips away the library symbols that PDAL needs, meaning that PDAL can’t simply link
against GDAL (http://www.gdal.org). If you are building both of these libraries yourself, make
sure you build GDAL using the “External libgeotiff” option, which will prevent the insanity
that can ensue on some platforms. Conda Forge (https://anaconda.org/conda-forge/pdal) users,

14.1. Development 411

https://help.ubuntu.com/lts/serverguide/apt.html
https://conda.io/en/latest/
http://trac.osgeo.org/geotiff
http://trac.osgeo.org/geotiff
http://www.gdal.org
https://anaconda.org/conda-forge/pdal

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

including those using that platform to link and build PDAL themselves, do not need to worry
about this issue.

Optional Dependencies
LASzip (Latest package/source recommended)

LASzip (http://laszip.org) is a library with a CMake-based build system that provides periodic
compression of ASPRS LAS
(http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html)
data. It is used by the writers.las (page 117) and readers.las (page 69) to provide compressed
LAS support.:

Source: https://github.com/LASzip/LASzip
Conda: https://anaconda.org/conda-forge/laszip

laz-perf (Latest package/source recommended)

laz-perf provides an alternative LAS compression/decompression engine that may be slightly
faster in some circumstances. laz-perf supports fewer LAS point types and versions than does
LASzip. It is also used as a compression type for writers.oci (page 126) and writers.sqlite
(page 135):

Source: https://github.com/verma/laz-perf/
Conda: https://anaconda.org/conda-forge/laz-perf

libxml2 (2.7+)

libxml2 (http://xmlsoft.org) is used to serialize PDAL dimension descriptions into XML for the
database drivers such as writers.oci (page 126), readers.sqlite (page 97), or
readers.pgpointcloud (page 84).:

Source: http://www.xmlsoft.org/
Conda: https://anaconda.org/conda-forge/libxml2

Plugin Dependencies

PDAL comes with optional plugin stages that require other libraries in order to run. Many of
these libraries are licensed in a way incompatible with the PDAL license or they may be

412 Chapter 14. Development

http://laszip.org
http://www.asprs.org/Committee-General/LASer-LAS-File-Format-Exchange-Activities.html
http://xmlsoft.org

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

commercial products that require purchase.

OCI (10g+)

Obtain the Oracle Instant Client
(http://www.oracle.com/technology/tech/oci/instantclient/index.html) and install in a location
on your system. Be sure to install both the “Basic” and the “SDK” modules. Set your
ORACLE_HOME environment variable system- or user-wide to point to this location so the
CMake configuration can find your install. OCI is used by both writers.oci (page 126) and
readers.oci (page 81) for Oracle Point Cloud read/write support. In order to obtain the OCI
libraries you must register with Oracle.:

Libraries: https://www.oracle.com/technetwork/database/database-
—technologies/instant-client/downloads/index.html

Nitro (Requires specific source package)

Nitro is a library that provides NITF
(http://en.wikipedia.org/wiki/National_Imagery_Transmission_Format) support for PDAL to
write LAS-in-NITF files for writers.nitf (page 123). You must use the specific version of Nitro
referenced below for licensing and compatibility reasons.:

Source: http://github.com/hobu/nitro

PCL (1.7.2+)

The Point Cloud Library (PCL) (http://pointclouds.org) is used by the pcl_command,
writers.pcd (page 130), readers.pcd (page 83), and filters.pclblock to provide support for
various PCL-related operations.:

Source: https://github.com/PointCloudLibrary/pcl
Conda: https://anaconda.org/conda-forge/pcl

TileDB (1.4.1+)

TileDB (https://www.tiledb.i0) is an efficient multi-dimensional array management system
which introduces a novel on-disk format that can effectively store dense and sparse array data
with support for fast updates and reads. It features excellent compression, and an efficient
parallel I/O system with high scalability. It is used by writers.tiledb (page 137) and
readers.tiledb (page 102).:

14.1. Development 413

http://www.oracle.com/technology/tech/oci/instantclient/index.html
http://en.wikipedia.org/wiki/National_Imagery_Transmission_Format
http://pointclouds.org
https://www.tiledb.io

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Source: https://github.com/TileDB-Inc/TileDB
Conda: https://anaconda.org/conda-forge/tiledb

14.1.3 Errors and Error Handling

Exceptions

PDAL typically throws a std: : runtime_error for error conditions that is catchable as
pdal::pdal_error.

PDAL Position on (Non)conformance

PDAL proudly and unabashedly supports formal standards/specifications for file formats. We
recognize, however, that in some cases files will not follow a given standard precisely, due to
an unclear spec or simply out of carelessness.

When reading files that are not formatted correctly:

* PDAL may try to compensate for the error. This is typically done when as a practical
matter the market needs support for well-known or pervasive, but nonetheless “broken”,
upstream implementations.

* PDAL may explicitly reject such files. This is typically done where we do not wish to
continue to promote or support mistakes that should be fixed upstream.

PDAL will strive to write correctly formatted files. In some cases, however, PDAL may choose
to offer as an option the ability to break the standard if, as a practical matter, doing so would
significantly aid the market. Such an option would never be the default behavior, however.

For files that are conformant but which lie, such as the extents in the header being wrong, we
will generally offer both the ability to propagate the “wrong” information and the ability to
helpfully correct it on the fly; the latter is generally our default position.

14.1.4 Metadata

In addition to point data, PDAL stores metadata during the processing of a pipeline. Metadata
is stored internally as strings, though the API accepts a variety of types that are automatically
converted as necessary. Each item of metadata consists of a name, a description (optional), a
value and a type. In addition, each item of metadata can have a list of child metadata values.

Metadata is made available to users of PDAL through a JSON tree. Commands such as pdal
pipeline (page 32) and pdal translate (page 38) provide options to allow the JSON-formatted
metadata created by PDAL to be written to a file.

414 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Metadata Nodes

Each item of metadata is stored in an object known as a Met adat aNode. Metadata nodes are
reference types that can be copied cheaply. Metadata nodes are annotated with the original data
type to allow better interpretation of the data. For example, when binary data is stored in a base
64-encoded format, knowing that the data doesn’t ulitmately represent a string can allow
algorithms to convert it back to its binary representation when desired. Similarly, knowing that
data is numeric allows it to be written as a JSON numeric type rather than as a string.

The name of a metadata node is immutable. If you wish to add a copy of metadata (and
subchildren) to some node using a different name, you need to call the provided function
“clone()”.

A metadata node is added as a child to another node using add(). Usually the type of the data
assigned to the metadata node is determined through overloading, but there are instances where
this is impossible and the programmer must call a specific function to set the type of the
metadata node. Binary data that has been converted to a string by base 64 encoding can be
tagged as a such by calling addEncoded(). Programmers can specify the type of a node

explictly by calling addWithType(). Currently supported types are: “boolean”, “string”,

“float”, “double”, “bounds”, “nonNegativelnteger”, “integer”, “uuid” and “base64Binary”.

Metadata nodes can be presented as lists when transformed to JSON. If multiple nodes with the
same name are added to a parent node, those subnodes will automatically be tagged as list
nodes and will be enclosed in square brackets. Single nodes can be forced to be treated as
JSON lists by calling addList() instead of add() on a parent node.

Metadata and Stages

Stages in PDAL each have a base metadata node. You can retrieve a stage’s metadata node by
calling getMetadata(). When a PDAL pipeline is run, its metadata is organized as a list of stage
nodes to which subnodes have been added. From within the implementation of a stage,
metadata is typically added similarly to the following:

MetadataNode root = getMetadata() ;
root.add ("nodename", "Some string data");
root.add ("intlist", 45);
root.add("intlist", 55);

Uuid nullUuid;

MetadataNode pnode ("parent");

root .add (pnode) ;
pnode.add("nulluuidnode"”, nullUuid);
pnode.addList ("num_in_list", 66);

If the above code was part of a stage “writers.test”, a transformation to JSON would produce
the following output:

14.1. Development 415

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

"writers.test":

{
"intlist":
[
45,
55
]I

"nodename": "Some string data',
"parent":

{
"nulluuidnode": "00000000-0000-0000-0000-000000000000",
"num in list":

[
66

]

14.1.5 Writing with PDAL

Author Bradley Chambers
Contact brad.chambers @ gmail.com
Date 11/02/2017

This tutorial will describe a complete example of using PDAL C++ objects to write a LAS file.
The example will show fetching data from your own data source rather than interacting with a
PDAL stage.

Note: If you implement your own Readers (page 53) that conforms to PDAL’s
pdal: :Stage (page 500), you can implement a simple read-filter-write pipeline using
Pipeline (page 45) and not have to code anything explicit yourself.

Includes

First, our code.

#include <pdal/PointView.hpp>
#include <pdal/PointTable.hpp>
#include <pdal/Dimension.hpp>

416 Chapter 14. Development

mailto:brad.chambers@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

#include <pdal/Options.hpp>
#include <pdal/StageFactory.hpp>

#include <io/BufferReader.hpp>
#include <vector>

void fillView(pdal::PointViewPtr view)
{
struct Point
{
double x;
double y;
double z;

}i

for (int i = 0; i < 1000; ++1i)

Point p;

p.x = -93.0 + ix0.001;
p.y = 42.0 + i%x0.001;
p-z = 106.0 + i;

view—>setField (pdal::Dimension::Id::X, i, p.x);
view->setField(pdal::Dimension::Id::Y, i, p.y);
view—->setField (pdal::Dimension::Id::%Z, i, p.z);

int main (int argc, charx argv|[])
{
using namespace pdal;

Options options;
options.add("filename", "myfile.las");

PointTable table;

table.layout () —>registerDim(Dimension: :Id: :X);
table.layout () —>registerDim(Dimension: :Id::Y);
table.layout () —>registerDim(Dimension: :Id::Z);

PointViewPtr view (new PointView (table));

fillView (view) ;

14.1. Development 417

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

BufferReader reader;
reader.addView (view) ;

StageFactory factory;

// Set second argument to 'true' to let factory take ownership of
// stage and facilitate clean up.
Stage xwriter = factory.createStage ("writers.las");

writer—->setInput (reader) ;
writer—->setOptions (options) ;
writer—->prepare (table) ;
writer—>execute (table) ;

Take a closer look. We will need to include several PDAL headers.

#include <pdal/PointView.hpp>
#include <pdal/PointTable.hpp>
#include <pdal/Dimension.hpp>
#include <pdal/Options.hpp>
#include <pdal/StageFactory.hpp>

#include <io/BufferReader.hpp>

BufferReader will not be required by all users. Here is it used to populate a bare PointBuffer.
This will often be accomplished by a Reader stage.

Instead of directly including headers for individual stages, e.g., LasWriter, we rely on the
StageFactory which has the ability to query available stages at runtime and return pointers to
the created stages.

We proceed by providing a mechanism for generating dummy data for the x, y, and z
dimensions.

void fillView (pdal::PointViewPtr view)

{

struct Point
{
double x;
double y;
double z;
bi

for (int i = 0; 1 < 1000; ++1i)

{
Point p;

418

Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

= -93.0 + 1x0.001;
= 42.0 + ix0.001;
106.0 + 1i;

' 'O 'O
N oKX

view->setField(pdal::Dimension::Id::X, i, p.x);
view—->setField (pdal::Dimension::Id::Y, i, p.y);
view—>setField(pdal::Dimension::Id::Z, i, p.z);

int main (int argc, charx argvl[])
{

using namespace pdal;

Options options;
options.add("filename", "myfile.las");

PointTable table;

Finally, the main code which creates the dummy data, puts it into a BufferReader and sends it
to a writer.

int main (int argc, charx argv|[])
{

using namespace pdal;

Options options;
options.add("filename", "myfile.las");

PointTable table;
table.layout () —>registerDim(Dimension: :Id: :X);
table.layout () —>registerDim(Dimension: :Id::Y);
table.layout () —>registerDim(Dimension: :Id::Z);
PointViewPtr view(new PointView (table));

fillView (view) ;

BufferReader reader;
reader.addView (view) ;

StageFactory factory;
// Set second argument to 'true' to let factory take ownership of

// stage and facilitate clean up.
Stage xwriter = factory.createStage ("writers.las");

14.1. Development 419

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

writer—>setInput (reader) ;
writer—->setOptions (options) ;
writer—->prepare (table) ;
writer—>execute (table);

Compiling and running the program

Note: Refer to Compilation (page 404) for information on how to build PDAL.

To build this example, simply copy the files tutorial.cpp and CMakeLists.txt from the
examples/writing directory of the PDAL source tree.

cmake_minimum required (VERSION 3.6)
project (WritingTutorial)

find _package (PDAL 2.0.0 REQUIRED CONFIG)
set (CMAKE_CXX_STANDARD 11)
set (CMAKE_CXX_STANDARD_REQUIRED ON)

add_executable (tutorial tutorial.cpp)

target_link_libraries (tutorial PRIVATE ${PDAL_LIBRARIES})
target_include_directories (tutorial PRIVATE
S{PDAL_INCLUDE_DIRS}
${PDAL_INCLUDE_DIRS}/pdal)

Note: Refer to CMake (page 445) for an explanation of the basic CMakeL.ists.

Begin by configuring your project using CMake (shown here on Unix) and building using
make.

cd /PATH/TO/WRITING/TUTORIAL
mkdir build

cd build

cmake

make

v O - W W0

After the project is built, you can run it by typing:

$./tutorial

420 Chapter 14. Development

20

21

22

23

24

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

14.1.6 Writing a filter

PDAL can be extended through the development of filter functions.
See also:

For more on filters and their role in PDAL, and their lifecycle please refer to PDAL
Architecture Overview (page 393).

Every filter stage in PDAL is implemented as a plugin (sometimes referred to as a “driver”).
Filters native to PDAL, such as filters.ferry (page 157), are implemented as static filters and are
statically linked into the PDAL library. Filters that require extra/optional dependencies, or are
external to the core PDAL codebase altogether, such as filters.python (page 242), are
implemented as shared filters, and are built as individual shared libraries, discoverable by
PDAL at runtime.

In this tutorial, we will give a brief example of a filter, with notes on how to make it static or
shared.

The header

First, we provide a full listing of the filter header.

// MyFilter.hpp
#pragma once

#include <pdal/pdal_internal.hpp>
#include <pdal/Filter.hpp>

namespace pdal

{

class PDAL DLL MyFilter : public Filter
{
public:

MyFilter () : Filter()

{}

std::string getName () const;

private:
double m_value;
Dimension: :Id m_myDimension;

virtual void addDimensions (PointLayoutPtr layout) ;
virtual void addArgs (ProgramArgsé& args);
virtual PointViewSet run (PointViewPtr view);

14.1. Development 421

25

26

27

28

29

30

20

21

22

23

24

25

26

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

MyFilter& operator=(const MyFilter&); // not implemented
MyFilter (const MyFilters&); // not implemented

bi
} // namespace pdal

This header should be relatively straightforward, but we will point out one method that must be
declared for the plugin interface to be satisfied.

std::string getName () const;

In many instances, you should be able to copy this header template verbatim, changing only the
filter class name, includes, and member functions/variables as required by your
implementation.

The source

Again, we start with a full listing of the filter source.
// MyFilter.cpp

#include "MyFilter.hpp"

#include <pdal/pdal_internal.hpp>

namespace pdal

{

static PluginInfo const s_info

{

"filters.name",
"My awesome filter",
"http://link/to/documentation”

}i

CREATE_SHARED_STAGE (MyFilter, s_info)

std::string MyFilter::getName () const { return s_info.name; }
void MyFilter::addArgs (ProgramArgsé& args)

{

args.add ("param", "Some parameter", m_value, 1.0);

void MyFilter::addDimensions (PointLayoutPtr layout)

422 Chapter 14. Development

27

28

29

30

31

32

33

34

35

36

37

38

39

40

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

layout—->registerDim(Dimension: :Id::Intensity);
m_myDimension = layout->registerOrAssignDim ("MyDimension",
Dimension: :Type: :Unsigned8) ;

PointViewSet MyFilter::run (PointViewPtr input)
{

PointViewSet viewSet;
viewSet.insert (input) ;
return viewSet;

} // namespace pdal

For your filter to be available to PDAL at runtime, it must adhere to the PDAL plugin interface.
As a convenience, we provide macros to do just this.

We begin by creating a P1uginInfo struct containing three identifying elements - the filter
name, description, and a link to documentation.

static PluginInfo const s_info

{
"filters.name",
"My awesome filter",
"http://link/to/documentation"

I

PDAL requires that filter names always begin with filters., and end with a string that
uniquely identifies the filter. The description will be displayed to users of the PDAL CLI
(pdal —--drivers). When making a shared plugin, the name of the shared library must
correspond with the name of the filter provided here. The name of the generated shared object
must be

libpdal plugin_filter <filter name>.<shared library extension>

Next, we pass the following to the CREATE__SHARED__STAGE macro, passing in the name of
the stage and the P1uginInfo struct.

CREATE_SHARED_STAGE (MyFilter, s_info)
To create a static stage, we simply change CREATE__SHARED_ STAGE to
CREATE_STATC_STAGE.

Finally, we implement a method to get the plugin name, which is primarily used by the PDAL
CLI when using the ——drivers or ——options arguments.

14.1. Development 423

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

std::string MyFilter::getName () const { return s_info.name; }

Now that the filter has implemented the proper plugin interface, we will begin to implement
some methods that actually implement the filter. The addArgs () method is used to register
and bind any provided options to the stage. Here, we get the value of param, if provided, else
we populate m_value with the default value of 1. 0. Option names, descriptions, and default
values specified in addArgs () will be displayed via the PDAL CLI with the ——options
argument.

void MyFilter::addArgs (ProgramArgsé& args)
{

args.add ("param", "Some parameter", m_value, 1.0);

In addDimensions () we make sure that the known Intensity dimension is registered.
We can also add a custom dimension, MyDimension, which will be populated within run () .

void MyFilter::addDimensions (PointLayoutPtr layout)
{

layout—>registerDim(Dimension: :Id: :Intensity);
m_myDimension = layout->registerOrAssignDim("MyDimension",
Dimension: :Type: :Unsigned8) ;

Finally, we define run (), which takes as input a PointViewPtr and returns a
PointViewSet. Itis here that we can transform existing dimensions, add data to new
dimensions, or selectively add/remove individual points.

We suggest you take a closer look at our existing filters to get an idea of the power of the
Filter stage and inspiration for your own filters!

Compilation

Setup a CMakeLists.txt file to compile your filter against PDAL:

cmake_minimum_ required (VERSION 2.8.12)
project (FilterTutorial)

find package (PDAL 1.9.0 REQUIRED CONFIG)

set (CMAKE_CXX_STANDARD 11)

set (CMAKE_CXX_STANDARD_REQUIRED ON)
add_library(pdal_plugin_filter myfilter SHARED MyFilter.cpp)
target_link_libraries (pdal_plugin_filter_myfilter PRIVATE ${PDAL_
LIBRARIES})

target_include_directories (pdal_plugin_filter myfilter PRIVATE $

424 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

target_link_directories (pdal_plugin_filter _myfilter PRIVATE S${PDAL_

oLIBRARY DIRS})

Note: CMakeLists.txt contents may vary slightly depending on your project requirements,

operating system, and compilter.

14.1.7 Writing a kernel

Author Bradley Chambers
Contact brad.chambers @ gmail.com
Date 11/02/2017

PDAL’s command-line application can be extended through the development of kernel
functions. In this tutorial, we will give a brief example.

The header

First, we provide a full listing of the kernel header.

// MyKernel.hpp

#pragma once

#include <pdal/Kernel.hpp>
#include <string>

namespace pdal

{

class PDAL DLL MyKernel : public Kernel

{
public:
MyKernel () ;

std::string getName () const;
int execute(); // override

private:
void addSwitches (ProgramArgsé& args);

14.1. Development

425

mailto:brad.chambers@gmail.com

23

24

25

26

27

20

21

22

23

24

25

26

27

28

29

30

31

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

std::string m_input_file;
std::string m_output_file;
bi

} // namespace pdal

As with other plugins, the MyKernel class needs to return a name.

std::string getName () const;

The source

Again, we start with a full listing of the kernel source.

// MyKernel.cpp
#include "MyKernel.hpp"

#include <pdal/Filter.hpp>
#include <pdal/Kernel.hpp>
#include <pdal/Options.hpp>
#include <pdal/PointTable.hpp>

#include <memory>
#include <string>

namespace pdal {

static PluginInfo const s_info

{
"kernels.mykernel",
"MyKernel",
"http://link/to/documentation"

}i

CREATE_SHARED_KERNEL (MyKernel, s_info);
std::string MyKernel::getName () const {

MyKernel: :MyKernel () : Kernel ()
{1}

return s_info.name; }

void MyKernel: :addSwitches (ProgramArgsé& args)

{

args.add ("input, 1", "Input filename", m_input_file).

—setPositional () ;

426

Chapter 14. Development

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

args.add ("output,o", "Output filename", m_output_file).
—~setPositional () ;

}

int MyKernel::execute ()

{
PointTable table;

Stage& reader = makeReader (m_input_file, "readers.las");

// Options should be added in the call to makeFilter, makeReader,

// or makeWriter so that the system can override them with those

// provided on the command line when applicable.

Options filterOptions;

filterOptions.add ("step", 10);

Stage& filter = makeFilter("filters.decimation", reader,
—~filterOptions);

Stage& writer makeWriter (m_output_file, filter, "writers.text
S");

writer.prepare (table);

writer.execute (table) ;

return O;

} // namespace pdal

In your kernel implementation, you will use a macro defined in pdal_macros. This macro
registers the plugin with the PluginManager.

CREATE_SHARED_KERNEL (MyKernel, s_info);

To build up a processing pipeline in this example, we need to create two objects: the
pdal::PointTable (page 492).

int MyKernel: :execute ()

{
PointTable table;

Stage& reader = makeReader (m_input_file, "readers.las");

// Options should be added in the call to makeFilter, makeReader,
// or makeWriter so that the system can override them with those
// provided on the command line when applicable.

Options filterOptions;

filterOptions.add ("step", 10);

14.1. Development 427

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Stage& filter = makeFilter ("filters.decimation", reader,
—~filterOptions);

Stage& writer makeWriter (m_output_file, filter, "writers.text
="

writer.prepare (table);

writer.execute (table);

return 0O;

To implement the actual kernel logic we implement execute(). In this case, the kernel reads a
las file, decimates the data (eliminates some points) and writes the result to a text file. The base
kernel class provides functions (makeReader, makeFilter, makeWriter) to create stages with
options as desired. The pipeline that has been created can be run by preparing and executing
the last stage in the pipeline.

When compiled, a dynamic library file will be created; in this case,
libpdal_plugin_kernel_mykernel.dylib

Put this file in whatever directory PDAL_DRIVER_PATH is pointing to. Then, if you run
pdal —--drivers, you should see mykernel listed in the possible commands.

To run this kernel, you would use pdal mykernel -i <input las file> -o
<output text file>.

Compilation

Setup a CMakeLists.txt file to compile your kernel against PDAL:

cmake_minimum_required (VERSION 2.8.12)
project (KernelTutorial)

find_package (PDAL 2.0.0 REQUIRED CONFIG)
set (CMAKE_CXX_STANDARD 11)
set (CMAKE_CXX_STANDARD_REQUIRED ON)

add_library(pdal_plugin_kernel _mykernel SHARED MyKernel.cpp)
target_link_libraries (pdal_plugin_kernel_mykernel PRIVATE S${PDAL__
—LIBRARIES})
target_include_directories (pdal_plugin_kernel mykernel PRIVATE

S {PDAL_INCLUDE_DIRS})
target_link_directories (pdal_plugin_kernel_mykernel PRIVATE S${PDAL_
LIBRARY DIRS})

428 Chapter 14. Development

20

21

22

23

24

25

26

27

28

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

14.1.8 Writing a reader

Authors Bradley Chambers, Scott Lewis
Contact brad.chambers @gmail.com
Date 11/02/2017

PDAL’s command-line application can be extended through the development of reader
functions. In this tutorial, we will give a brief example.

The header

First, we provide a full listing of the reader header.

// MyReader.hpp
#pragma once

#include <pdal/PointView.hpp>
#include <pdal/Reader.hpp>
#include <pdal/util/IStream.hpp>

namespace pdal
{
class MyReader : public Reader
{
public:
MyReader () : Reader () {};
std::string getName () const;

private:
std: :unique_ptr<ILeStream> m_stream;
point_count_t m_index;
double m_scale_z;

virtual void addDimensions (PointLayoutPtr layout);

virtual void addArgs (ProgramArgsé& args);

virtual void ready (PointTableRef table);

virtual point_count_t read(PointViewPtr view, point_count_t,
—count) ;

virtual void done (PointTableRef table);

i

std::unique_ptr<ILeStream> m_stream;
point_count_t m_index;

14.1. Development 429

mailto:brad.chambers@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

double m_scale_z;

m_streamis used to process the input, while m__index is used to track the index of the
records. m_scale_ z is specific to MyReader, and will be described later.

virtual
virtual
virtual
virtual
—count) ;
virtual

void addDimensions (PointLayoutPtr layout);

void addArgs (ProgramArgsé& args);

void ready (PointTableRef table);

point_count_t read(PointViewPtr view, point_count_t

void done (PointTableRef table);

Various other override methods for the stage. There are a few others that could be overridden,
which will not be discussed in this tutorial.

Note: See ./include/pdal/Reader.hpp of the source tree for more methods that a
reader can override or implement.

The source

Again, we start with a full listing of the reader source.

// MyReader.cpp

#include "MyReader.hpp"
#include <pdal/util/ProgramArgs.hpp>

namespace pdal

{

static PluginInfo const s_info

{

"readers.myreader",

"My Awesome Reader",
"http://link/to/documentation”

I 8

CREATE_SHARED_STAGE (MyReader, s_info)

std::string MyReader::getName () const { return s_info.name; }

void MyReader: :addArgs (ProgramArgsé& args)

{

args.add("z_scale", "Z Scaling", m_scale_z, 1.0);

430

Chapter 14. Development

23

25

26

27

28

29

30

31

33

34

36

37

38

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

57

58

59

60

61

62

63

64

65

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

void MyReader::addDimensions (PointLayoutPtr layout)

{

layout—->registerDim (Dimension: :Id: :X) ;
layout—->registerDim(Dimension: :Id::Y);
layout—->registerDim(Dimension: :Id::Z2);
layout—->registerOrAssignDim ("MyData",

—~Dimension: :Type: :Unsigned64) ;

}

void MyReader: :ready (PointTableRef)

{

m_index = 0;
SpatialReference ref ("EPSG:4385");
setSpatialReference (ref);

template <typename T>

T

convert (const StringList& s, const std::stringé& name, size_ t |

—~fieldno)

{

<

T output;
bool bConverted = Utils::fromString(s[fieldno], output);
if (!bConverted)
{
std::stringstream oss;
0Ss << "Unable to convert " << name << ", " << s[fieldno] <

", to double";
throw pdal_error(oss.str());

return output;

point_count_t MyReader::read(PointViewPtr view, point_count_t

—count)
{
PointLayoutPtr layout = view->layout();
PointId nextId = view—>size();
PointId idx = m_index;

point_count_t numRead = 0;

m_stream.reset (new ILeStream(m_filename));

size_t HEADERSIZE (1) ;

14.1.

Development 431

66

67

68

69

70

71

72

73

74

75

76

71

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

size_t skip_lines((std::max) (HEADERSIZE, (size_t)m_index));

size t line_no(1l);

for (std::string line; std::getline (*m_stream->stream(), line);
—~line_no++)

{
if (line_no <= skip_lines)
{

continue;

// MyReader format: X::Y::Z::Data
StringlList s = Utils::split2(line, ':'");

unsigned long u64(0);
if (s.size() != 4)
{

std: :stringstream oss;

0ss << "Unable to split proper number of fields. Expected 4,

<~ got "

<< s.size();
throw pdal_error(oss.str());

std::string name ("X");
view—->setField (Dimension: :Id: :X, nextId,

—name, 0));

name = "Y";
view—>setField (Dimension: :Id::Y, nextId,

—name, 1));

name = "72";

convert<double> (s,

convert<double> (s,

double z = convert<double> (s, name, 2) * m_scale_z;

view->setField(Dimension: :Id::Z, nextId,

name = "MyData";

z);

view->setField (layout->findProprietaryDim (name),

nextId,
convert<unsigned int> (s,

nextId++;
if (m_cb)
m_cb (xview, nextId);
}
m_index = nextId;
numRead = nextId;

name, 3));

432

Chapter 14. Development

109

110

111

112

113

114

115

116

117

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

return numRead;

void MyReader: :done (PointTableRef)
{

m_stream.reset () ;

} //namespace pdal

In your reader implementation, you will use a macro to create the plugin. This macro registers
the plugin with the PDAL PluginManager. In this case, we are declaring this as a SHARED
stage, meaning that it will be loaded at runtime instead of being linked to the main PDAL
installation. The macro is supplied with the class name of the plugin and a PluginInfo object.
The PluginInfo objection includes the name of the plugin, a description, and a link to
documentation.

When making a shared plugin, the name of the shared library must correspond with the name
of the reader provided here. The name of the generated shared object must be

libpdal_plugin_reader_<reader name>.<shared library extension>

static PluginInfo const s_info

{
"readers.myreader",
"My Awesome Reader",
"http://link/to/documentation"

bi
CREATE_SHARED_STAGE (MyReader, s_info)

This method will process a options for the reader. In this example, we are setting the z_scale
value to a default of 1.0, indicating that the Z values we read should remain as-is. (In our
reader, this could be changed if, for example, the Z values in the file represented mm values,
and we want to represent them as m in the storage model). addArgs will bind values given
for the argument to the m__scale_ z variable of the stage.

void MyReader: :addArgs (ProgramArgsé& args)
{

args.add ("z_scale", "Z Scaling", m _scale_z, 1.0);

This method registers the various dimensions the reader will use. In our case, we are using the
X, Y, and Z built-in dimensions, as well as a custom dimension MyData.

14.1. Development 433

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

void MyReader: :addDimensions (PointLayoutPtr layout)
{
layout—->registerDim(Dimension: :Id: :X) ;
layout—->registerDim(Dimension: :Id::Y);
layout—->registerDim(Dimension: :Id::Z);
layout—>registerOrAssignDim ("MyData",
—~Dimension: :Type: :Unsigned64) ;

}

This method is called when the Reader is ready for use. It will only be called once, regardless
of the number of PointViews that are to be processed.

void MyReader: :ready (PointTableRef)
{

m_index = 0;
SpatialReference ref ("EPSG:4385");
setSpatialReference (ref) ;

This is a helper function, which will convert a string value into the type specified when it’s
called. In our example, it will be used to convert strings to doubles when reading from the
input stream.

template <typename T>
T convert (const StringlList& s, const std::string& name, size_t
—~fieldno)
{
T output;
bool bConverted = Utils::fromString(s[fieldno], output);
if (!bConverted)

{

std::stringstream oss;
0Ss << "Unable to convert " << name << ", " << s[fieldno] <
<

", to double";

throw pdal_error(oss.str());

return output;

This method is the main processing method for the reader. It takes a pointer to a PointView
which we will build as we read from the file. We initialize some variables as well, and then
reset the input stream with the filename used for the reader. Note that in other readers, the
contents of this method could be very different depending on the format of the file being read,
but this should serve as a good start for how to build the PointView object.

434 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

PointLayoutPtr layout = view->layout();
PointId nextId = view—>size () ;
PointId idx = m_index;

point_count_t numRead = 0;

In preparation for reading the file, we prepare to skip some header lines. In our case, the header
is only a single line.

size t HEADERSIZE (1) ;
size t skip_lines ((std::max) (HEADERSIZE, (size_t)m_index));

Here we begin our main loop. In our example file, the first line is a header, and each line
thereafter is a single point. If the file had a different format the method of looping and reading
would have to change as appropriate. We make sure we are skipping the header lines here
before moving on.

size_t line_no(1l);
for (std::string line; std::getline (*m_stream->stream(), line);
—~line_no++)
{
if (line_no <= skip_lines)
{

continue;

Here we take the line we read in the for block header, split it, and make sure that we have the
proper number of fields.

// MyReader format: X::Y::Z::Data
StringList s = Utils::split2(line, ':");

unsigned long u64 (0);
if (s.size() != 4)
{

std::stringstream oss;

0ss << "Unable to split proper number of fields. Expected 4,

— got "
<< s.size();
throw pdal_error(oss.str());

Here we take the values we read and put them into the PointView object. The X and Y fields
are simply converted from the file and put into the respective fields. MyData is done likewise
with the custom dimension we defined. The Z value is read, and multiplied by the scale_z
option (defaulted to 1.0), before the converted value is put into the field.

When putting the value into the PointView object, we pass in the Dimension that we are
assigning it to, the ID of the point (which is incremented in each iteration of the loop), and the

14.1. Development 435

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

dimension value.

std::string name ("X");
view—>setField (Dimension: :Id::X, nextId, convert<double> (s,

—name, 0));

name = "Y";
view->setField(Dimension: :Id::Y, nextId, convert<double> (s,

—name, 1));

name = "72";
double z = convert<double> (s, name, 2) * m_scale_z;
view->setField(Dimension: :Id::Z, nextId, z);

name = "MyData";
view—>setField (layout->findProprietaryDim (name),
nextId,

Finally, we increment the nextld and make a call into the progress callback if we have one with
our nextld. After the loop is done, we set the index and number read, and return that value as
the number of points read. This could differ in cases where we read multiple streams, but that
won’t be covered here.

nextId++;
if (m_cb)
m_cb (*view, nextId);
}

m_index

nextId;
numRead = nextId;

When the read method is finished, the done method is called for any cleanup. In this case, we
simply make sure the stream is reset.

void MyReader: :done (PointTableRef)

{

m_stream.reset () ;

Compiling and Usage

The MyReader.cpp code can be compiled. For this example, we’ll use cmake. Here is the
CMakeLists.txt file we will use:

cmake_minimum_ required (VERSION 2.8.12)

project (ReaderTutorial)

find_package (PDAL 2.0 REQUIRED CONFIG)

436

Chapter 14. Development

e e N o W

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

set (CMAKE_CXX_STANDARD 11)
set (CMAKE_CXX_STANDARD_REQUIRED ON)

add_library (pdal_plugin_reader_myreader SHARED MyReader.cpp)
target_link_libraries (pdal_plugin_reader_myreader PRIVATE ${PDAL_
_LIBRARIES})
target_include_directories (pdal_plugin_reader myreader PRIVATE

S {PDAL_INCLUDE_DIRS})
target_link_directories (pdal_plugin_reader_myreader PRIVATE ${PDAL_
—LIBRARY_DIRS})

If this file is in the directory containing MyReader.hpp and MyReader.cpp, simply run cmake
., followed by make. This will generate a file called
libpdal_plugin_reader_myreader.dylib.

Put this dylib file into the directory pointed to by PDAL_DRIVER_PATH, and then when you
run pdal —--drivers, you should see an entry for readers.myreader.

To test the reader, we will put it into a pipeline and output a text file.

Please download the pipeline-myreader.json
(https://github.com/PDAL/PDAL/blob/master/examples/writing-reader/pipeline-
myreader.json?raw=true) and test-reader-input.txt
(https://github.com/PDAL/PDAL/blob/master/examples/writing-reader/test-reader-
input.txt?raw=true)

files.

In the directory with those two files, run pdal pipeline pipeline-myreader. json.
You should have an output file called output . t xt, which will have the same data as in the
input file, except in a CSV style format, and with the Z values scaled by .001.

14.1.9 Writing a writer

Authors Bradley Chambers, Scott Lewis
Contact brad.chambers @ gmail.com
Date 10/26/2016

PDAL’s command-line application can be extended through the development of writer
functions. In this tutorial, we will give a brief example.

The header

First, we provide a full listing of the writer header.

14.1. Development 437

https://github.com/PDAL/PDAL/blob/master/examples/writing-reader/pipeline-myreader.json?raw=true
https://github.com/PDAL/PDAL/blob/master/examples/writing-reader/test-reader-input.txt?raw=true
mailto:brad.chambers@gmail.com

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

// MyWriter.hpp
#pragma once
#include <pdal/Writer.hpp>
#include <string>
namespace pdal {
typedef std::shared_ptr<std::ostream> FileStreamPtr;

class MyWriter : public Writer

{

public:
MyWriter ()
{}

std::string getName () const;

private:
virtual void addArgs (ProgramArgsé& args);
virtual void initialize();
virtual void ready (PointTableRef table);
virtual void write (const PointViewPtr view) ;
virtual void done (PointTableRef table);

std::string m_filename;
std::string m_newline;
std::string m_datafield;
int m_precision;

FileStreamPtr m_stream;
Dimension: :Id m_dataDim;
i

} // namespace pdal

In your MyWriter class, you will declare the necessary methods and variables needed to make
the writer work and meet the plugin specifications.

typedef std::shared_ptr<std::ostream> FileStreamPtr;

FileStreamPtr is defined to make the declaration of the stream easier to manage later on.

std::string getName () const;

438 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Every stage must return a unique name.

virtual void addArgs (ProgramArgsé& args);
virtual void initialize();

virtual void ready (PointTableRef table);
virtual void write (const PointViewPtr view);
virtual void done (PointTableRef table);

These methods are used during various phases of the pipeline. There are also more methods,
which will not be covered in this tutorial.

std::string m_filename;
std::string m_newline;
std::string m_datafield;
int m_precision;

FileStreamPtr m_stream;
Dimension: :Id m_dataDim;

These are variables our Writer will use, such as the file to write to, the newline character to use,
the name of the data field to use to write the MyData field, precision of the double outputs, the
output stream, and the dimension that corresponds to the data field for easier lookup.

As mentioned, there cen be additional configurations done as needed.

The source

We will start with a full listing of the writer source.

// MyWriter.cpp

#include "MyWriter.hpp"
#include <pdal/util/FileUtils.hpp>
#include <pdal/util/ProgramArgs.hpp>

namespace pdal

static PluginInfo const s_info

{
"writers.mywriter",
"My Awesome Writer",
"http://path/to/documentation”
}i

CREATE_SHARED_STAGE (MyWriter, s_info);

std::string MyWriter::getName () const { return s_info.name; }

14.1. Development 439

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

struct FileStreamDeleter
{
template <typename T>
void operator () (T ptr)
{
if (ptr)
{
ptr—->flush();
FileUtils::closeFile (ptr);

}
3

void MyWriter::addArgs (ProgramArgsé& args)

{
// setPositional () Makes the argument required.
args.add ("filename", "Output filename", m_filename) .

—~setPositional () ;

args.add ("newline", "Line terminator", m_newline, "\n");
args.add("datafield", "Data field", m_datafield, "UserData");
args.add ("precision", "Precision", m_precision, 3);

void MyWriter::initialize ()
{
m_stream = FileStreamPtr (FileUtils::createFile (m_filename, true),
FileStreambDeleter());
if (!m_stream)
{
std::stringstream out;
out << "writers.mywriter couldn't open '" << m_filename <<
"' for output.";
throw pdal_error (out.str());

void MyWriter::ready (PointTableRef table)
{

m_stream—>precision (m_precision);
*m_stream << std::fixed;

Dimension::Id d = table.layout () —>findDim(m_datafield);
if (d == Dimension::Id::Unknown)
{

std::ostringstream oss;

440 Chapter 14. Development

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

95

96

97

98

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

0ss << "Dimension not found with name '" << m_datafield << "'";

throw pdal_error(oss.str());

m_dataDim = d;

*m_stream << "#X:Y:Z:MyData" << m_newline;

void MyWriter::write (PointViewPtr view)

{

for (PointId idx = 0; idx < view->size(); ++idx)
{
double x = view->getFieldAs<double> (Dimension::Id::X, idx);
double y = view—->getFieldAs<double> (Dimension::Id::Y, idx);
double z = view->getFieldAs<double> (Dimension::Id::Z, idx);
unsigned int myData = 0;
if (!m_datafield.empty()) {
myData = (int) (view—>getFieldAs<double> (m_dataDim, idx) +_
-0.5);
}
*m_stream << x << """ <K<Ky << MM KKz << "

<< myData << m_newline;

void MyWriter::done (PointTableRef)
{

m_stream.reset () ;

In the writer implementation, we will use a macro defined in pdal_macros, which is included in

the include chain we are using.

static PluginInfo const s_info
{
"writers.mywriter",
"My Awesome Writer",
"http://path/to/documentation”
}i

CREATE_SHARED_STAGE (MyWriter, s_info);

14.1. Development

441

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Here we define a struct with information regarding the writer, such as the name, a description,
and a path to documentation. We then use the macro to create a SHARED stage, which means
it will be external to the main PDAL installation. When using the macro, we specify the name
of the Stage and the PluginInfo struct we defined earlier.

When making a shared plugin, the name of the shared library must correspond with the name
of the writer provided here. The name of the generated shared object must be

:: libpdal_plugin_writer_<writer name>.<shared library extension>

struct FileStreamDeleter
{
template <typename T>
void operator () (T ptr)
{
if (ptr)
{
ptr—>flush();
FileUtils::closeFile (ptr);

}
}i

This struct is used for helping with the FileStreamPtr for cleanup.

void MyWriter::addArgs (ProgramArgsé& args)

{
// setPositional () Makes the argument required.
args.add ("filename", "Output filename", m_filename) .

—setPositional () ;

args.add("newline", "Line terminator", m_newline, "\n");
args.add ("datafield", "Data field", m_datafield, "UserData");
args.add ("precision", "Precision", m_precision, 3);

This method defines the arguments the writer provides and binds them to private variables.

void MyWriter::initialize ()
{
m_stream = FileStreamPtr (FileUtils::createFile(m_filename, true),
FileStreamDeleter());
if (!m_stream)
{
std::stringstream out;
out << "writers.mywriter couldn't open '" << m_filename <<
"' for output.";
throw pdal_error (out.str());

442 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

This method initializes our file stream in preparation for writing.

void MyWriter::ready (PointTableRef table)
{

m_stream->precision (m_precision);
*m_sStream << std::fixed;

Dimension::Id d = table.layout () -—>findDim(m_datafield);

if (d == Dimension: :Id::Unknown)

{
std: :ostringstream oss;
0sSs << "Dimension not found with name '" << m_datafield << "'";
throw pdal_error(oss.str());

m_dataDim = d;

*m_stream << "#X:Y:Z:MyData" << m_newline;

The ready method is used to prepare the writer for any number of PointViews that may be
passed in. In this case, we are setting the precision for our double writes, looking up the
dimension specified as the one to write into MyData, and writing the header of the output file.

void MyWriter::write (PointViewPtr view)

{

for (PointId idx = 0; idx < view->size(); ++idx)
{
double x = view->getFieldAs<double> (Dimension::Id::X, idx);
double y = view->getFieldAs<double> (Dimension::Id::Y, idx);
double z = view->getFieldAs<double> (Dimension::Id::Z, idx);
unsigned int myData = 0;
if (!m_datafield.empty()) {
myData = (int) (view—>getFieldAs<double> (m_dataDim, idx) +_
-0.5);
}
*m_stream << x << """ <K<Ky << "M KKz o << "

<< myData << m_newline;

This method is the main method for writing. In our case, we are writing a very simple file, with

14.1. Development 443

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

data in the format of X:Y:Z:MyData. We loop through each index in the PointView, and for
each one we take the X, Y, and Z values, as well as the value for the specified MyData
dimension, and write this to the output file. In particular, note the reading of MyData; in our
case, MyData is an integer, but the field we are reading might be a double. Converting from
double to integer is done via truncation, not rounding, so by adding .5 before making the
conversion will ensure rounding is done properly.

Note that in this case, the output format is pretty simple. For more complex outputs, you may
need to generate helper methods (and possibly helper classes) to help generate the proper
output. The key is reading in the appropriate values from the PointView, and then writing those
in whatever necessary format to the output stream.

void MyWriter::done (PointTableRef)
{

m_stream.reset () ;

This method is called when the writing is done. In this case, it simply cleans up the output
stream by resetting it.

Compiling and Usage

To compile this reader, we will use cmake. Here is the CMakeLists.txt file we will use for this
process:

cmake_minimum_required (VERSION 2.8.12)
project (WriterTutorial)

find_package (PDAL 2.0.0 REQUIRED CONFIG)
set (CMAKE_CXX_STANDARD 11)
set (CMAKE_CXX_STANDARD_REQUIRED ON)

add_library (pdal_plugin_writer_mywriter SHARED MyWriter.cpp)
target_link_libraries (pdal_plugin_writer_mywriter PRIVATE ${PDAL_
—LIBRARIES})

target_link_directories (pdal_plugin_writer_mywriter PRIVATE ${PDAL_

—LIBRARY DIRS})

target_include_directories (pdal_plugin_writer mywriter PRIVATE
S{PDAL_INCLUDE_DIRS})

If this file is in the directory with the MyWriter.hpp and MyWriter.cpp files, simply run cmake
. followed by make. This will generate a file called
libpdal_plugin_writer_mywriter.dylib.

Put this dylib file into the directory pointed to by PDAL_DRIVER_PATH, and then when you
run pdal —--drivers, you will see an entry for writers.mywriter.

444 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

To test the writer, we will put it into a pipeline and read in a LAS file and covert it to our output
format. For this example, use interesting.las
(https://github.com/PDAL/PDAL/blob/master/test/data/interesting.las ?raw=true), and run it
through pipeline-mywriter.json
(https://github.com/PDAL/PDAL/blob/master/examples/writing-writer/pipeline-
mywriter.json?raw=true).

If those files are in the same directory, you would just run the command pdal pipeline
pipeline-mywriter. json, and it will generate an output file called output.txt, which
will be in the proper format. From there, if you wanted, you could run that output file through
the MyReader that was created in the previous tutorial, as well.

14.1.10 CMake

Author Bradley Chambers
Contact brad.chambers@gmail.com
Date 01/21/2015

This tutorial will explain how to use PDAL in your own projects using CMake. A more
complete, working example can be found /ere (page 416).

Note: We assume you have either built or installed (page 404) PDAL.

Basic CMake configuration

Begin by creating a file named CMakeLists.txt that contains:

cmake_minimum_ required (VERSION 2.8)

project (MY_PDAL_PROJECT)

find_package (PDAL 1.0.0 REQUIRED CONFIG)

include _directories (${PDAL_INCLUDE DIRS})
link_directories (${PDAL_LIBRARY DIRS})

add_definitions (${PDAL_DEFINITIONS})

set (CMAKE_CXX_FLAGS "-std=c++11")

add_executable (tutorial tutorial.cpp)
target_link_libraries (tutorial PRIVATE ${PDAL_LIBRARIES})

CMakelLists explained

cmake_minimum_required (VERSION 2.8.12)

14.1. Development 445

https://github.com/PDAL/PDAL/blob/master/test/data/interesting.las?raw=true
https://github.com/PDAL/PDAL/blob/master/examples/writing-writer/pipeline-mywriter.json?raw=true
mailto:brad.chambers@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

The cmake_minimum_required command specifies the minimum required version of CMake.
We use some recent additions to CMake in PDAL that require version 2.8.12.

project (MY_PDAL_PROJECT)

The CMake project command names your project and sets a number of useful CMake
variables.

find package (PDAL 1.0.0 REQUIRED CONFIG)

We next ask CMake to locate the PDAL package, requiring version 1.0.0 or higher.

include_directories (${PDAL_INCLUDE_DIRS})
link directories (${PDAL LIBRARY DIRS})
add_definitions (${PDAL_DEFINITIONS})

If PDAL is found, the following variables will be set:
e PDAL _FOUND: set to 1 if PDAL is found, otherwise unset

PDAL_INCLUDE_DIRS: set to the paths to PDAL installed headers and the dependency
headers

PDAL_LIBRARIES: set to the file names of the built and installed PDAL libraries

PDAL_LIBRARY DIRS: set to the paths where PDAL libraries and 3rd party
dependencies reside

PDAL_VERSION: the detected version of PDAL

* PDAL_DEFINITIONS: list the needed preprocessor definitions and compiler flags

set (CMAKE_CXX_FLAGS "-std=c++11")

We haven’t quite implemented the setting of PDAL_DEFINITIONS within the
PDALConfig.cmake file, so for now you should specify the c++11 compiler flag, as we use it
extensively throughout PDAL.

add_executable (tutorial tutorial.cpp)

We use the add_executable command to tell CMake to create an executable named tutorial
from the source file rutorial.cpp.

target_link_libraries (tutorial PRIVATE ${PDAIL_LIBRARIES})

We assume that the tutorial executable makes calls to PDAL functions. To make the linker

aware of the PDAL libraries, we use target_link_libraries to link tutorial against the
PDAL_LIBRARIES.

446 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Compiling the project

Make a build directory, where compilation will occur:

S cd /PATH/TO/MY/PDAL/PROJECT
S mkdir build

Run cmake from within the build directory:

$ cd build
S cmake ..

Now, build the project:

S make

The project is now built and ready to run:

$./tutorial

14.2 Project

Project resources, such as how to update the docs, where the test frameworks are, who develops
the software, and conventions to use when developing new code can be found in this section.

14.2.1 Coding Conventions

To the extent possible and reasonable, we value consistency of source code formatting, class
and variable naming, and so forth. Please follow existing code, rather than introducing your
own (of course, better) formatting or change existing code unless you’re changing behavior.

This note lists some such conventions that we would like to follow, where it makes sense to do
S0.

Source Formatting

We use astyle (http://astyle.sourceforge.net) as a tool to reformat C++ source code files in a
consistent fashion. The file astylerc, at the top of the github repo, contains the default settings
Wwe use.

Our conventions are:

* Lines should be kept to 80 characters where reasonable.

14.2. Project 447

http://astyle.sourceforge.net

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

LF endings (unix style), not CRLF (windows style)
spaces, not tabs

indent to four (4) spaces (“Four shalt be the number thou shalt count, and the number of
the counting shall be four. Three shalt thou not count, neither count thou five...”)

braces shall be on their own lines, like this:

copyright header, license, and author(s) on every file

two spaces between major units, e.g. function bodies

Naming Conventions

classes should be names using UpperCamelCase
functions should be in lowerCamelCase

member variables should be prefixed with “m_", followed by the name in
lowerCamelCase — for example, “m_numberOfPoints”

there should be one class per file, and the name of the file should match the class name —
that is, class PointData should live in files PointData.hpp and PointData.cpp.

Other Conventions

Surround all code with “namespace pdal {... }”; where justifiable, you may introduce a
nested namespace.

All exceptions that are not caught internally should be of type pdal_error. Exceptions
used as local error handling should always be caught.

Don’t put member function bodies in the class declaration in the header file, unless
clearly justified for performance reasons. Use the “inline” keyword in these cases(?).

Use const.
Don’t put “using” declarations in headers.

Document all public (and protected) member functions using doxygen markup.

448

Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

#include Conventions
* For public headers from the ./include/pdal directory, use angle brackets: #include
<pdal/Stage.h>
* For private headers (from somehwere in ./src), use quotes: #include “Support.hpp”

* Don’t #include a file where a simple forward declaration will do. (Note: this only applies
to pdal files; don’t forward declare from system or 3rd party headers.)

* Don’t include a file unless it actually is required to compile the source unit.

* Don’t use manual include guards. All reasonable compilers support the once pragma:

#pragma once

14.2.2 Contributors

Numerous organizations, companies, and individuals have contributed time, money, and code
to build PDAL up into a highly capable software package. Without these contributions, PDAL
would not progress as quickly, and its quality wouldn’t be as high. The development team is
proud of the software, and it collectively represents years of experiences doing point cloud data
management. We hope you’ll find it useful too.

This page is to recognize these contributors and their contributions. Thanks.

Engineering Contributors

@ (http://hobu.co) Hobu (http://hobu.co) is

the primary company behind the design, testing, development, and distribution of PDAL. Two
Hobu team members primarily interact with PDAL. Howard Butler (https://github.com/hobu)
founded the project, and he provides project leadership and software development. Andrew
Bell (https://github.com/abellgithub) has contributed design, refactoring, and new feature
development of PDAL over the past couple of years.

Michael Gerlek (http://github.com/mpgerlek) helped bootstrap PDAL by providing its first
design, basic primitive objects, and first stage implementations.

14.2. Project 449

http://hobu.co
http://hobu.co
https://github.com/hobu
https://github.com/abellgithub
https://github.com/abellgithub
http://github.com/mpgerlek

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(http://radiantsolutions.com) Bradley
Chambers (https://github.com/chambbj) from RadiantSolutions (http://radiantsolutions.com/)
has contributed numerous features and capabilities to the PDAL project, including Poisson
sampling (page 216) and Progressive Morphological Filters. He is also a prolific Tutorials
(page 267) writer.

Funding Contributors

(http://www.erdc.usace.army.mil/Locations/CRREL.aspx) The
US Army Corps of Engineers Remote Sensing / GIS Center of Expertise at CRREL
(http://www.erdc.usace.army.mil/Locations/CRREL.aspx) sponsors development of PDAL for
its use in point cloud data management systems. CRREL
(http://www.erdc.usace.army.mil/Locations/CRREL.aspx)’s GRiD (http://lidar.io/about.html)
project manages LiDAR and point cloud data for a multitude of U.S. Army Corps missions.
Find out more about GRiD in this LiDAR Magazine article

(http://www.lidarmag.com/content/view/11343/198/).

450 Chapter 14. Development

http://radiantsolutions.com
https://github.com/chambbj
https://github.com/chambbj
http://radiantsolutions.com/
http://www.erdc.usace.army.mil/Locations/CRREL.aspx
http://www.erdc.usace.army.mil/Locations/CRREL.aspx
http://www.erdc.usace.army.mil/Locations/CRREL.aspx
http://lidar.io/about.html
http://www.lidarmag.com/content/view/11343/198/
http://www.nsf.gov

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(http://www.nsf.gov) (http://www.uh.edu) NSF
(http://www.nsf.gov), in collaboration with Dr. Craig Glennie
(http://www.cive.uh.edu/faculty/glennie) at the University of Houston (http://www.uh.edu)
supports PDAL with funding support to develop and enhance statistical methods,
transformation operations, tutorial and example development, and PCL (http://pointclouds.org)
integration.

14.2.3 Docs

Requirements

To build the PDAL documentation yourself, you need to install the following items:

* Sphinx (http://sphinx-doc.org/)

Breathe (https://github.com/michaeljones/breathe)

Doxygen (http://www.stack.nl/~dimitri/doxygen/)

Latex (https://en.wikipedia.org/wiki/LaTeX)

dvipng (https://en.wikipedia.org/wiki/Dvipng)

Sphinx (http://sphinx-doc.org/) and Breathe (https://github.com/michaeljones/breathe)

Python dependencies should be installed from PyPI (https://pypi.python.org/pypi) with pip or
easy_install.

(sudo) pip install sphinx sphinxconfig-bibtex breathe

Note: If you are installing these packages to a system-wide directory, you may need the sudo
in front of the pip, though it might be better that instead you use virtual environments
(https://pypi.python.org/pypi/virtualenv) instead of installing the packages system-wide.

14.2. Project 451

http://www.uh.edu
http://www.nsf.gov
http://www.cive.uh.edu/faculty/glennie
http://www.uh.edu
http://pointclouds.org
http://sphinx-doc.org/
https://github.com/michaeljones/breathe
http://www.stack.nl/~dimitri/doxygen/
https://en.wikipedia.org/wiki/LaTeX
https://en.wikipedia.org/wiki/Dvipng
https://pypi.python.org/pypi
https://pypi.python.org/pypi/virtualenv

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Doxygen

The PDAL documentation also depends on Doxygen (http://www.stack.nl/~dimitri/doxygen/),
which can be installed from source or from binaries from the doxygen website
(http://www.stack.nl/~dimitri/doxygen/download.html). If you are on Max OS X and use
homebrew (http://mxcl.github.io/homebrew/), you can install doxygen with a simple brew
install doxygen.

Latex

Latex (https://en.wikipedia.org/wiki/LaTeX) and pdflatex
(https://www.tug.org/applications/pdftex/) are used to generate the companion PDF of the
website.

dvipng

For math output, we depend on dvipng (https://en.wikipedia.org/wiki/Dvipng) to turn Latex
(https://en.wikipedia.org/wiki/LaTeX) output into math PNGes.

Generation

Once you have installed all the doc dependencies, you can then build the documentation itself.
The doc/ directory in the PDAL source tree contains a Makefile which can be used to build
all documentation. For a list of the output formats supported by Sphinx, simply type make.
For example, to build html documentation:

cd doc
make doxygen html

The html docs will be placed in doc/build/html/. The make doxygen is necessary to
re-generate the API documentation from the source code using Breathe
(https://github.com/michaeljones/breathe) and Sphinx (http://sphinx-doc.org/).

Note: For a full build of the C++ AP/ (page 465) documentation, you need to make
doxygen to have it build its XML output which is consumed by Breathe
(https://github.com/michaeljones/breathe) before make html can be issued.

452 Chapter 14. Development

http://www.stack.nl/~dimitri/doxygen/
http://www.stack.nl/~dimitri/doxygen/download.html
http://mxcl.github.io/homebrew/
https://en.wikipedia.org/wiki/LaTeX
https://www.tug.org/applications/pdftex/
https://en.wikipedia.org/wiki/Dvipng
https://en.wikipedia.org/wiki/LaTeX
https://github.com/michaeljones/breathe
http://sphinx-doc.org/
https://github.com/michaeljones/breathe

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Website

The http://pdal.io website is regenerated from the x—maintenance branch using Travis
(page 464). It will be committed by the PDAL-docs GitHub (http://github.com/PDAL/PDAL)
user and pushed to the https://github.com/PDAL/pdal.github.io repository. The website is then
served via GitHub Pages (https://pages.github.com/).

Note: The website is regenerated and pushed only on the after_success Travis
(page 464) call. If the tests aren’t passing, the website won’t be updated.

14.2.4 Building Docker Containers for PDAL

PDAL’s repository (page 14) is linked to DockerHub (https://hub.docker.com/r/pdal/pdal/) for
automatic building of Docker (https://www.docker.com/) containers. PDAL keeps three
Docker containers current.

* pdal/ubuntu-dependencies:latest — PDAL’s dependencies
e pdal/pdal:latest — PDAL master
* pdal/pdal:1.5—PDAL maintenance branch

Note: Containers are built upon the Dependencies (page 453) container, but the Dependencies
(page 453) container is not pinned to specific Bionic or PDAL release times. It corresponds to
where ever the dependencies tag of the PDAL source tree at
https://github.com/PDAL/PDAL resides

Dependencies

The PDAL dependencies Docker container is used by both the latest and release branch Docker
containers. The dependencies container is also used during Continuous Integration (page 464)
testing by Travis. It is built using the Dockerfile at
https://github.com/PDAL/PDAL/blob/master/scripts/docker/ubuntu/dependencies/Dockerfile

The pdal/dependencies:latest image is regenerated by force-pushing a tag of the
SHA you wish to use to have DockerHub (https://hub.docker.com/r/pdal/pdal/) build.

git tag —-f dependencies
git push origin refs/tags/dependencies -f

Note: The dependencies container is currently built upon Ubuntu Bionic

14.2. Project 453

http://pdal.io
http://github.com/PDAL/PDAL
https://github.com/PDAL/pdal.github.io
https://pages.github.com/
https://hub.docker.com/r/pdal/pdal/
https://www.docker.com/
https://github.com/PDAL/PDAL
https://github.com/PDAL/PDAL/blob/master/scripts/docker/ubuntu/dependencies/Dockerfile
https://hub.docker.com/r/pdal/pdal/
http://releases.ubuntu.com/18.04/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

(http://releases.ubuntu.com/18.04/). When the next Ubuntu LTS is released, the PDAL project
will likely move to it.

Maintenance

A PDAL container corresponding to the last major release is automatically created and
maintained with every commit to the active release branch. For example, the
1.4-maintenance branch will have a corresponding pdal/pdal: 1.4 container made
with every commit on DockerHub (https://hub.docker.com/r/pdal/pdal/). Users are encouraged
to use these containers for testing, bug confirmation, and deployment

[pdal/pdal:1.4]

pdal/dependencies:latest

Fig. 14.1: Docker containers on maintenance branch correspond to major PDAL releases.

Latest (or master)

A PDAL container corresponding to a developer-selected release point is made available at
pdal/pdal:latest and corresponds to the manual push of a docker-master tag by
PDAL developers. This container is typically used for testing and verification of fixes, and it is
recommended that users looking to depend on PDAL’s Docker containers always use known
release versions off of the last stable release branch.

Warning: You should be using the Maintenance (page 454) Docker container for any
production-oriented operations. Only use the latest one to test or prototype a latest,
unreleased feature.

S git tag —-f docker-master
$ git push origin refs/tags/docker-master -f

14.2.5 Alpine

This page is intended to provide information about Alpine that may be useful for PDAL
developers, especially when it comes to adding new PDAL dependencies.

454 Chapter 14. Development

https://hub.docker.com/r/pdal/pdal/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

[pdal/pdal:latest J

‘ pdal/dependencies:latest I

Fig. 14.2: The pdal/pdal:latest branch is current relative to the docker-master
branch in GitHub.

Packages

When adding a dependency to PDAL, you will need to update our Travis configuration for
continuous integration and testing, and Dockerfiles for automated builds. Begin by checking
for your package in https://pkgs.alpinelinux.org/packages. Packages containing binaries can
typically be found by searching for the library/package name alone. Development files are
typically grouped in a separate subpackage with —dev appended to the package name.
Libraries are sometimes grouped in yet another subpackage with —11bs appended. It may
take a little inspection of the package contents to determine exactly what you are getting with a
particular package.

If a package does not yet exist, you’ll need to consult
https://wiki.alpinelinux.org/wiki/Creating_an_Alpine_package or phone a friend. Alpine
developers can frequently be found on the IRC channel #alpine-devel.

Travis

We currently run our Travis CI builds by first pulling alpine: 3. 6 and then running a script
within the Alpine container. Any new dependencies that are required for PDAL to be built and
tested will need to be added to https://github.com/PDAL/PDAL/blob/master/scripts/ci/script.sh.

Docker

Our Docker automated builds are built from the Dockerfiles located in
https://github.com/PDAL/PDAL/tree/master/scripts/docker. There are folders for each
supported release as well as master, and there are variants for Alpine and Ubuntu based
images. In the Alpine Dockerfiles, any development dependencies should be added in the apk
add step that uses the ——virtual switch, as these will be deleted after compilation. Any
runtime dependencies should be added to the regular apk add step.

14.2. Project 455

https://pkgs.alpinelinux.org/packages
https://wiki.alpinelinux.org/wiki/Creating_an_Alpine_package
https://github.com/PDAL/PDAL/blob/master/scripts/ci/script.sh
https://github.com/PDAL/PDAL/tree/master/scripts/docker

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

14.2.6 Testing

Unit Tests

A unit test framework is provided, with the goal that all (nontrivial) classes will have unit tests.
At the very least, each new class should have a corresponding unit test file stubbed in, even if
there aren’t any tests yet.

* Qur unit tests also include testing of the command line Applications (page 25) and

known plugins.

* We use the Google C++ Test Framework (https://code.google.com/p/googletest/), but a
local copy of it is embedded in the PDAL source tree, and you don’t have to have it
available as a dependency.

* Unit tests for features that are configuration-dependent, e.g. laszip compression, should
be put under the same #1 fdef guards as the classes being tested.

* The Support class, in the . /test/unit directory, provides some functions for
comparing files, etc, that are useful in writing test cases.

* Unit tests should not be long-running.

Running the Tests

To run all unit tests, issue the following command from your build directory:

S ctest

make test orninja test should still work as well.

Depending on the which optional components you’ve chose to build, your output should
resemble the following:

Test project /Users/hobu/dev/git/pdal

Start
1/61 Test
02 sec
Start
2/61 Test
02 sec
Start
3/61 Test
02 sec
Start
4/61 Test
02 sec
Start

1:
#1:

#2:

#3:

pdal_bounds_test

pdal_ bounds_test

pdal_config_test

pdal _config test

pdal_file utils_test

pdal_file utils_test ..

: pdal_georeference_test
#4:

pdal_ georeference_ test

pdal_kdindex_test

............. Passed 0.
............. Passed 0.
............. Passed 0.
............. Passed 0.

456

Chapter 14. Development

https://code.google.com/p/googletest/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

5/61 Test #5:

—03 sec

Start 6:

6/61 Test #6:
—03 sec

Start 7:

7/61 Test #7:
—02 sec

Start 8:

8/61 Test #8:
02 sec

Start 9:

9/61 Test #9:
02 sec

Start 10:

10/61 Test #10:
—~03 sec

Start 11:

11/61 Test #11:
—03 sec

Start 12:

12/61 Test #12:
—03 sec

Start 13:

13/61 Test #13:
—07 sec

Start 14:

14/61 Test #14:
—02 sec

Start 15:

15/61 Test #15:
—02 sec

Start 16:

16/61 Test #16:
02 sec

Start 17:

17/61 Test #17:
—04 sec

Start 18:

18/61 Test #18:
20 sec

Start 19:

19/61 Test #19:
02 sec

Start 20:

20/61 Test #20:

04 sec

pdal_kdindex test ..

pdal_log_test
pdal_log test
pdal_metadata_test

pdal_metadata test .

pdal_options_test
pdal_options_test ..

pdal_pdalutils_test
pdal pdalutils test

pdal_pipeline_manager_test

pdal_ pipeline _manager. test

pdal_point_view_test
pdal_point_view test

pdal_point_table_test

pdal point_table test

pdal_spatial_reference_test

pdal_ spatial_ reference test

pdal_support_test
pdal_support_test ..

pdal_user_callback_test

pdal_user. _callback test

pdal_utils_test
pdal_utils_test
pdal_lazperf_ test

pdal_ lazperf test ..

pdal_io_bpf_ test
pdal_io bpf test ...

pdal_io_buffer_ test
pdal_io buffer test

pdal_io_faux_test
pdal_ io faux test ..

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

14.2. Project

457

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

pdal_io_ilvis2_test

pdal_io 1lvisZ2 test

pdal_io_las_reader_test

pdal_io las reader _test

pdal_io_las_writer_ test

pdal_io las writer _test

pdal_io_optech_test

pdal_io optech test

pdal_io_ply_ reader_test

pdal_io ply reader _test

pdal_io _ply writer test

pdal_io ply writer_ test

pdal_io_gfit_test

pdal_io qfit test

pdal_io_sbet_reader_test

pdal_io sbet_reader _test

pdal_io_sbet_writer_test

pdal_io sbet_writer test

pdal_io_terrasolid_test

pdal_io terrasolid test

pdal_filters_chipper_test

pdal_filters_chipper_test

pdal_filters_colorization_test
pdal_ filters colorization_ test

pdal_filters_crop_test

pdal_filters crop_test

pdal_filters_decimation_test

pdal_ filters decimation test ..

pdal_filters_divider_test

pdal_ filters divider _test

pdal_filters_ferry test

pdal_filters_ferry test

..... Passed 0.
..... Passed 0.
..... Passed 2.
..... Passed 0.
..... Passed 0.
..... Passed 0.
..... Passed 0.
..... Passed 0.
..... Passed 0.
..... Passed 0.
..... Passed 0.

..... Passed 11.

..... Passed 0.
..... Passed 0.
..... Passed 0.
..... Passed 0.

Start 21:
21/61 Test #21:
06 sec

Start 22:
22/61 Test #22:
—49 sec

Start 23:
23/61 Test #23:
27 sec

Start 24:
24/61 Test #24:
—~03 sec

Start 25:
25/61 Test #25:
—03 sec

Start 26:
26/61 Test #26:
02 sec

Start 27:
27/61 Test #27:
—03 sec

Start 28:
28/61 Test #28:
—04 sec

Start 29:
29/61 Test #29:
03 sec

Start 30:
30/61 Test #30:
~03 sec

Start 31:
31/61 Test #31:
03 sec

Start 32:
32/61 Test #32:
40 sec

Start 33:
33/61 Test #33:
—04 sec

Start 34:
34/61 Test #34:
02 sec

Start 35:
35/61 Test #35:
—~03 sec

Start 36:
36/61 Test #36:
—04 sec
458

Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Start 37: pdal_filters_merge_test
37/61 Test #37: pdal_filters_merge_test Passed 0.
—03 sec

Start 38: pdal_ filters_reprojection_test
38/61 Test #38: pdal filters reprojection_test ... Passed 0.
—03 sec

Start 39: pdal_filters_range_test
39/61 Test #39: pdal_ filters range_test Passed 0.
—05 sec

Start 40: pdal_filters_randomize_test
40/61 Test #40: pdal_filters_randomize test Passed 0.
—02 sec

Start 41: pdal_filters_sort_test
41/61 Test #41: pdal_filters_sSort_tesSt Passed 0.
-39 sec

Start 42: pdal_filters_splitter_test
42/61 Test #42: pdal_filters_splitter_test Passed 0.
—03 sec

Start 43: pdal_filters_stats_test
43/61 Test #43: pdal_filters_stats_test Passed 0.
—~03 sec

Start 44: pdal_ filters_transformation_test
44/61 Test #44: pdal_ filters transformation_test Passed 0.
—03 sec

Start 45: pdal_merge_test
45/61 Test #45: pdal_merge_tesSteeeeeeenenenn. Passed 0.
—07 sec

Start 46: pc2pc_test
46/61 Test #46: PC2PC_EESE v v e et ittt e Passed 0.
15 sec

Start 47: xml schema_ test
47/61 Test #47: xml _schema teStueoeeeeeeenenen. Passed 0.
02 sec

Start 48: pdal_filters_attribute_test
48/61 Test #48: pdal_filters_attribute test Passed 0.
09 sec

Start 49: pdal_plugins_cpd_kernel_test
49/61 Test #49: pdal_plugins_cpd_kernel test ***Exception:
—~Other 0.08 sec

Start 50: hexbintest
50/61 Test #50: hexbintesStueeeeeeeeeenn. Passed 0.
—03 sec

Start 51: icetest
51/61 Test #51: 1CELESE vttt ittt eeeennns Passed 0.
—04 sec

Start 52: mrsidtest
52/61 Test #52: mMrsSidtesStueeeeeeeeeeennn. Passed 0.
—~06 sec
14.2. Project 459

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Start 53: pdal_io_nitf writer_test

53/61 Test #53: pdal_io nitf writer_test Passed 0.
08 sec

Start 54: pdal_io_nitf_ reader_ test
54/61 Test #54: pdal_io nitf reader _test Passed 0.
—04 sec

Start 55: ocitest
55/61 Test #55: OCItESE vttt ittt it eeeeenns *++Failed 0.
06 sec

Start 56: pcltest
56/61 Test #56: PCLEESE v v et v e ettt et et ee e e Passed 0.
28 sec

Start 57: pgpointcloudtest

57/61 Test #57: pgpointcloudtesSteeeeueuenene... Passed 1.
—~66 sec

Start 58: plangtest
58/61 Test #58: plangtesteueeeeeeeeeeeeenn. Passed 0.
—14 sec

Start 59: python_predicate_test
59/61 Test #59: python predicate_tesSt Passed 0.
—~16 sec

Start 60: python_programmable_ test
60/61 Test #60: python programmable test Passed 0.
15 sec

Start 61: sqglitetest
61/61 Test #61: SQLItELESE « v v v i ettt eee e Passed 0.
~55 sec

97% tests passed, 2 tests failed out of 61
Total Test time (real) = 21.57 sec
The following tests FAILED:

49 - pdal_plugins_cpd_kernel_test (OTHER_FAULT)
55 - ocitest (Failed)

For a more verbose output, use the —V flag. Or, to run an individual test suite, use -R <suite
name>. For example:

$ ctest -V -R pdal_io_bpf_test

Should produce output similar to:

UpdateCTestConfiguration from :/Users/hobu/dev/git/pdal/
—DartConfiguration.tcl

UpdateCTestConfiguration from :/Users/hobu/dev/git/pdal/
—DartConfiguration.tcl

460 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Test project /Users/hobu/dev/git/pdal
Constructing a list of tests
Done constructing a list of tests
Checking test dependency graph...
Checking test dependency graph end
test 18

Start 18: pdal_io_bpf_ test

18: Test command: /Users/hobu/dev/git/pdal/bin/pdal_io_bpf_test
18: Environment variables:

18: PDAL_DRIVER_PATH=/Users/hobu/dev/git/pdal/lib

18: Test timeout computed to be: 9.99988e+06

18: [==========] Running 20 tests from 1 test case.

183 [==—=======] Global test environment set-up.

18g [==========] 20 tests from BPFTest

18: [RUN] BPFTest.test_point_major

18: [OK] BPFTest.test_point_major (8 ms)

18: [RUN] BPFTest.test_dim_major

18: [OK] BPFTest.test_dim _major (3 ms)

18: [RUN] BPFTest.test_byte_major

18: [OK] BPFTest.test_byte_major (4 ms)

18: [RUN] BPFTest.test_point_major_zlib

18: [OK] BPFTest.test_point_major_zlib (6 ms)
18: [RUN] BPFTest.test_dim _major_zlib

18: [OK] BPFTest.test_dim _major_zlib (4 ms)

18: [RUN] BPFTest.test_byte _major_zlib

18: [OK] BPFTest.test_byte major_zlib (5 ms)

18: [RUN] BPFTest.roundtrip_byte

18: [OK] BPFTest.roundtrip_byte (15 ms)

18: [RUN] BPFTest.roundtrip_dimension

18: [OK] BPFTest.roundtrip_dimension (10 ms)

18: [RUN] BPFTest.roundtrip_point

18: [OK] BPFTest.roundtrip_point (11 ms)

18: [RUN] BPFTest.roundtrip_byte_ compression

18: [OK] BPFTest.roundtrip_byte_compression (16 ms)
18: [RUN] BPFTest.roundtrip_dimension_compression
18: [OK] BPFTest.roundtrip_dimension_compression (13 ms)
18: [RUN] BPFTest.roundtrip_point_compression

18: [OK] BPFTest.roundtrip_point_compression (14 ms)
18: [RUN] BPFTest.roundtrip_scaling

18: [OK] BPFTest.roundtrip_scaling (10 ms)

18: [RUN] BPFTest.extra_bytes

18: [OK] BPFTest.extra_bytes (15 ms)

18: [RUN] BPFTest.bundled

18: [OK] BPFTest.bundled (17 ms)

18: [RUN] BPFTest.inspect

18: [OK] BPFTest.inspect (1 ms)

14.2. Project 461

PDAL:

Point cloud Data Abstraction Library, Release 2.1.0

18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
18:
1/1
—sec

The

100% tests passed,

S bin/pdal_io_test

[RUN

[OK
[RUN

[OK
[RUN

[OK
[RUN

[OK
[__________
[__________
[==========
[PASSED
Test #18:

]

pdal_io_bpf_test

BPFTest .mueller

BPFTest.mueller (0 ms)

BPFTest.flex

BPFTest.flex (9 ms)

BPFTest.flex?2

BPFTest.flex2 (7 ms)
BPFTest.outputdims
BPFTest.outputdims (14 ms)

20 tests from BPFTest

(182 ms total)

Global test environment tear-—-down
20 tests from 1 test case ran. (182 ms total)

20 tests.

following tests passed:
pdal_io_bpf_ test

Again, the output should resemble the following:

Running 20 tests from 1 test case.

0 tests failed out of 1

Global test environment set-up.
20 tests from BPFTest

................. Passed 0.20

[RUN] BPFTest.test_point_major

[OK] BPFTest.test_point_major (7 ms)

[RUN] BPFTest.test_dim_major

[OK] BPFTest.test_dim major (3 ms)

[RUN] BPFTest.test_byte_major

[OK] BPFTest.test_byte_major (4 ms)

[RUN] BPFTest.test_point_major_zlib

[OK] BPFTest.test_point_major_zlib (5 ms)
[RUN] BPFTest.test_dim _major_zlib

[OK] BPFTest.test_dim _major_zlib (5 ms)

[RUN] BPFTest.test_byte_major_zlib

[OK] BPFTest.test_byte major_zlib (6 ms)
[RUN] BPFTest.roundtrip_byte

[OK] BPFTest.roundtrip_byte (17 ms)

[RUN] BPFTest.roundtrip_dimension

[OK] BPFTest.roundtrip_dimension (10 ms)
[RUN] BPFTest.roundtrip_point

[OK] BPFTest.roundtrip_point (11 ms)

462 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

[RUN] BPFTest.roundtrip_byte_compression

[OK] BPFTest.roundtrip_byte_compression (15 ms)
[RUN] BPFTest.roundtrip_dimension_compression

[OK] BPFTest.roundtrip_dimension_compression (14 ms)
[RUN] BPFTest.roundtrip_point_compression

[OK] BPFTest.roundtrip_point_compression (14 ms)
[RUN] BPFTest.roundtrip_scaling

[OK] BPFTest.roundtrip_scaling (11 ms)

[RUN] BPFTest.extra_bytes

[OK] BPFTest.extra_bytes (16 ms)

[RUN] BPFTest.bundled

[OK] BPFTest.bundled (17 ms)

[RUN] BPFTest.inspect

[OK] BPFTest.inspect (1 ms)

[RUN] BPFTest.mueller

[OK] BPFTest.mueller (0 ms)

[RUN] BPFTest.flex

[OK] BPFTest.flex (8 ms)

[RUN] BPFTest.flex?2

[OK] BPFTest.flex2 (7 ms)

[RUN] BPFTest.outputdims

[OK] BPFTest.outputdims (14 ms)

[m=========] 20 tests from BPFTest (185 ms total)
[me=m=m====] Global test environment tear—down
[==========] 20 tests from 1 test case ran. (185 ms total)
[PASSED] 20 tests.

This invocation allows us to alter Google Test’s default behavior. For more on the available
flags type:

$ bin/<test_name> —--help

Key among these flags are the ability to list tests (——gtest_1list_tests) and to run only
select tests (——gtest_filter).

Note: If the PostgreSQL PointCloud plugin was enabled on the CMake command line (with
~DBUILD_PLUGIN_PGPOINTCLOUD=ON) then ctest will attempt to run the
pgpointcloud tests. And you will get PostgreSQL connection errors if the libpg
environment variables (https://www.postgresql.org/docs/current/static/libpg-envars.html) are
not correctly set in your shell. This is for example how you can run the pgpointcloud tests:

S PGUSER=pdal PGPASSWORD=pdal PGHOST=localhost ctest -R
—pgpointcloudtest

—

14.2. Project 463

https://www.postgresql.org/docs/current/static/libpq-envars.html
https://www.postgresql.org/docs/current/static/libpq-envars.html

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Test Data

Use the directory . /test/data to store files used for unit tests. A vfunction is provided in
the Support class for referencing that directory in a configuration-independent manner.

Temporary output files from unit tests should go into the . /test /temp directory. A Support
function is provided for referencing this directory as well.

Unit tests should always clean up and remove any files that they create (except perhaps in case
of a failed test, in which case leaving the output around might be helpful for debugging).

14.2.7 Continuous Integration

PDAL regression tests (page 456) are run on a per-commit basis by at least two continuous
integration platforms.

Status

build ESSIAG (https://travis-ci.org/PDAL/PDAL)
(https://ci.appveyor.com/project/hobu/pdal)

Travis

The Travis continuous integration platform runs the PDAL test suite on Alpine Linux. The
build status and other supporting information can be found at https://travis-ci.org/PDAL/PDAL
Its configuration can be found at https://github.com/PDAL/PDAL/blob/master/.travis.yml All
administrators of the GitHub PDAL group have rights to modify the Travis configuration.

It uses the alpine: edge Docker image found at https://hub.docker.com/_/alpine/ as a base
platform. If you want to add new functionality based on a dependency, you will need to ensure
that the dependency is available in https://pkgs.alpinelinux.org/packages and update the Travis
configuration YAML accordingly.

AppVeyor

PDAL uses the AppVeyor continuous integration platform to run the PDAL compilation and
test suite on Windows. The build status and other supporting information can be found at
https://ci.appveyor.com/project/hobu/pdal Its configuration can be found at
https://github.com/PDAL/PDAL/blob/master/appveyor.yml All administrators of the GitHub
PDAL group have rights to modify the AppVeyor configuration.

Howard Butler (http://github.com/hobu) currently pays the bill to run in the AppVeyor upper
performance processing tier. The AppVeyor configuration depends on Conda (page 16) for

464 Chapter 14. Development

https://travis-ci.org/PDAL/PDAL
https://ci.appveyor.com/project/hobu/pdal
https://travis-ci.org/PDAL/PDAL
https://github.com/PDAL/PDAL/blob/master/.travis.yml
https://hub.docker.com/_/alpine/
https://pkgs.alpinelinux.org/packages
https://ci.appveyor.com/project/hobu/pdal
https://github.com/PDAL/PDAL/blob/master/appveyor.yml
http://github.com/hobu

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

dependencies. If you want to add new test functionality based on a dependency, you will need
to update Conda (page 16) with a new package to do so.

14.3 API

PDAL is a C++ library, and its primary API is in that language. There is also a Python
(page 257) API that allows reading of data and interaction with Numpy
(http://www.numpy.org/).

Note: Users looking for documentation on how to use PDAL’s command line applications
should look /ere (page 25) and users looking for documentation on how to contribute to PDAL
should look /ere (page 393).

14.3.1 C++ API

pdal: : BOX2D
class pdal: :BOX2D
BOX2D (page 465) represents a two-dimensional box with double-precision bounds.

Subclassed by pdal::BOX3D (page 469)

Public Functions

BOX2D ()
Construct an “empty” bounds box.

BOX2D (double minx, double miny, double maxx, double maxy)
Construct and initialize a bounds box.
Parameters
* minx: Minimum X value.
* miny: Minimum Y value.
* maxx: Maximum X value.

* maxy: Maximum Y value.

bool empty () const
Determine whether a bounds box has not had any bounds set.

14.3. API 465

http://www.numpy.org/

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Return Whether the bounds box is empty.

bool valid () const
Determine whether a bounds box has had any bounds set.

Return Whether the bounds box is valid.

void clear ()
Clear the bounds box to an empty state.

BOX2D (page 465) &grow (double x, double y)
Expand the bounds of the box to include the specified point.
Parameters
* x: X point location.

* y: Y point location.

BOX2D (page 465) &grow (double dist)
Expand the bounds of the box in all directions by a specified amount.
Parameters

* dist: Distance by which to expand the box.

bool contains (double x, double y) const
Determine if a bounds box contains a point.

Return Whether both dimensions are equal to or less than the maximum box
values and equal to or more than the minimum box values.
Parameters
e x: X dimension value.

* y: Y dimension value.

bool equal (const BOX2D (page 465) &other) const
Determine if the bounds of this box are the same as that of another box.

Empty bounds boxes are always equal.

Return true if the provided box has equal limits to this box, false otherwise.
Parameters

* other: Bounds box to check for equality.

466 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

bool operator== (BOX2D (page 465) const &other) const
Determine if the bounds of this box are the same as that of another box.

Empty bounds boxes are always equal.

Return true if the provided box has equal limits to this box, false otherwise.
Parameters

* other: Bounds box to check for equality.

bool operator!= (BOX2D (page 465) const &other) const
Determine if the bounds of this box are different from that of another box.

Empty bounds boxes are never unequal.

Return true if the provided box has limits different from this box, false
otherwise.

Parameters

* other: Bounds box to check for inequality.

BOX2D (page 465) &grow (const BOX2D (page 465) &other)
Expand this box to contain another box.
Parameters

e other: Box that this box should contain.

void elip (const BOX2D (page 465) &other)
Clip this bounds box by another so it will be contained by the other box.
Parameters

* other: Clipping box for this box.

bool contains (const BOX2D (page 465) &other) const
Determine if another bounds box is contained in this bounds box.

Equal limits are considered to be contained.

Return true if the provided box is contained in this box, false otherwise.
Parameters

e other: Bounds box to check for containment.

14.3. API 467

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

bool overlaps (const BOX2D (page 465) &other) const
Determine if another box overlaps this box.
Return Whether the provided box overlaps this box.
Parameters

* other: Box to test for overlap.
std::string toBox (uint32_t precision = 8) const
Convert this box to a string suitable for use in SQLite.
Return String format of this box.
Parameters
* precision: Precision for output [default: 8]
std::string toWKT (uint32_t precision = 8) const
Convert this box to a well-known text string.
Return String format of this box.

Parameters

* precision: Precision for output [default: 8]

std::string toGeoJSON (uint32_t precision = 8) const
Convert this box to a GeoJSON text string.
Return String format of this box.
Parameters

* precision: Precision for output [default: 8]
void parse (const std::string &s, std::string::size_type &pos)
Parse a string as a BOX2D (page 465).
Parameters

* s: String representation of the box.

* pos: Position in the string at which to start parsing. On return set to
parsing end position.

468 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Public Members

double minx
Minimum X value.

double maxx
Maximum X value.

double miny
Minimum Y value.

double maxy
Maximum Y value.

Public Static Functions

const BOX2D (page 465) &getDefaultSpatialExtent ()
Return a staticly-allocated Bounds extent that represents infinity.

Return A bounds box with infinite bounds,

struct error
Inherits from runtime_error

Public Functions

error (const std::string &err)

class pdal: :BOX3D
BOX3D (page 469) represents a three-dimensional box with double-precision bounds.

Inherits from pdal::BOX2D (page 465)

Public Functions
BOX3D ()
Clear the bounds box to an empty state.
BOX3D (const BOX3D (page 469) &box)
BOX3D (page 469) &operator= (const BOX3D (page 469) &box)

BOX3D (const BOX2D (page 465) &box)

14.3. API 469

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

BOX3D (double minx, double miny, double minz, double maxx, double maxy, double

maxz)
Construct and initialize a bounds box.

Parameters
e minx: Minimum X value.
* miny: Minimum Y value.
e minx: Minimum Z value.
* maxx: Maximum X value.
* maxy: Maximum Y value.

e maxz: Maximum Z value.

bool empty () const
Determine whether a bounds box has not had any bounds set (is in a state as if
default-constructed).

Return Whether the bounds box is empty.

bool valid () const
Determine whether a bounds box has had any bounds set.

Return if the bounds box is not empty

BOX3D (page 469) &grow (double x, double y, double z)
Expand the bounds of the box if a value is less than the current minimum or greater
than the current maximum.

If the bounds box is currently empty, both minimum and maximum box bounds
will be set to the provided value.
Parameters

* x: X dimension value.

* y: Y dimension value.

e 7: 7 dimension value.

void elear ()
Clear the bounds box to an empty state.

bool contains (double x, double y, double z) const
Determine if a bounds box contains a point.

470 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Return Whether both dimensions are equal to or less than the maximum box
values and equal to or more than the minimum box values.

Parameters
¢ x: X dimension value.
* y: Y dimension value.

e z: 7 dimension value.

bool contains (const BOX3D (page 469) &other) const
Determine if another bounds box is contained in this bounds box.

Equal limits are considered to be contained.

Return true if the provided box is contained in this box, false otherwise.
Parameters

e other: Bounds box to check for containment.

bool equal (const BOX3D (page 469) &other) const
Determine if the bounds of this box are the same as that of another box.

Empty bounds boxes are always equal.

Return true if the provided box has equal limits to this box, false otherwise.
Parameters

* other: Bounds box to check for equality.

bool operator== (BOX3D (page 469) const &rhs) const
Determine if the bounds of this box are the same as that of another box.

Empty bounds boxes are always equal.

Return true if the provided box has equal limits to this box, false otherwise.
Parameters

* other: Bounds box to check for equality.

bool operator!= (BOX3D (page 469) const &rhs) const
Determine if the bounds of this box are different from that of another box.

Empty bounds boxes are never unequal.

Return true if the provided box has limits different from this box, false
otherwise.

14.3. API 471

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Parameters

* other: Bounds box to check for inequality.

BOX3D (page 469) &grow (const BOX3D (page 469) &other)
Expand this box to contain another box.
Parameters

e other: Box that this box should contain.

BOX3D (page 469) &grow (double dist)
Expand this box by a specified amount.
Parameters

* dist: Distance by which box should be expanded.

void elip (const BOX3D (page 469) &other)
Clip this bounds box by another so it will be contained by the other box.
Parameters

* other: Clipping box for this box.

bool overlaps (const BOX3D (page 469) &other) const
Determine if another box overlaps this box.
Return Whether the provided box overlaps this box.
Parameters

* other: Box to test for overlap.

BOX2D (page 465) to2d () const
Convert this box to 2-dimensional bounding box.

Return Bounding box with Z dimension stripped.

std::string toBox (uint32_t precision = 8) const
Convert this box to a string suitable for use in SQLite.
Return String format of this box.
Parameters

* precision: Precision for output [default: 8]

472 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

std::string toWKT (uint32_t precision = 8) const
Convert this box to a well-known text string.

Return String format of this box.
Parameters

* precision: Precision for output [default: 8]

void parse (const std::string &s, std::string::size_type &pos)
Parse a string as a BOX3D (page 469).

Parameters
* s: String representation of the box.

* pos: Position in the string at which to start parsing. On return set to
parsing end position.

Public Members

double minz
Minimum Z value.

double maxz
Maximum Z value.

Public Static Functions

const BOX3D (page 469) &getDefaultSpatialExtent ()
Return a staticly-allocated Bounds extent that represents infinity.

Return A bounds box with infinite bounds,

struct error
Inherits from runtime_error

Public Functions

error (const std::string &err)

14.3. API 473

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

pdal: :Charbuf
class pdal: :Charbuf
Allow a data buffer to be used at a std::streambuf.

Inherits from streambuf

Public Functions

PDAL_DLL Charbuf ()
Construct an empty Charbuf (page 474).

PDAL_DLL Charbuf (std::vector<char> &v, pos_type bufOffset = 0)
Construct a Charbuf (page 474) that wraps a byte vector.
Parameters

 v: Byte vector to back streambuf.

* bufOffset: Offset in vector (ignore bytes before offset).

PDAL_DLL Charbuf (char *buf, size_t count, pos_type bufOffset =0)
Construct a Charbuf (page 474) that wraps a byte buffer.

Parameters
e buf: Buffer to back streambuf.
e count: Size of buffer.
* bufOffset: Offset in vector (ignore bytes before offset).
void initialize (char *buf, size_t count, pos_type bufOffset = 0)
Set a buffer to back a Charbuf (page 474).
Parameters
e buf: Buffer to back streambuf.

e count: Size of buffer.

* bufOffset: Offset in vector (ignore bytes before offset).

pdal: :Dimension

namespace pdal::Dimension

474 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Typedefs

typedef std::vector<Detail>DetailList

Enums

enum BaseType
Values:

None = 0x000
Signed = 0x100
Unsigned = 0x200
Floating = 0x400

enum Type
Values:

None =0

Unsigned8 = unsigned(BaseType::Unsigned) | 1
Signed8 = unsigned(BaseType::Signed) | 1
Unsignedl6 = unsigned(BaseType::Unsigned) | 2
Signedl16 = unsigned(BaseType::Signed) | 2
Unsigned32 = unsigned(BaseType::Unsigned) | 4
Signed32 = unsigned(BaseType::Signed) | 4
Unsignedé64 = unsigned(BaseType::Unsigned) | 8
Signedé64 = unsigned(BaseType::Signed) | 8
Float = unsigned(BaseType::Floating) | 4
Double = unsigned(BaseType::Floating) | 8

Functions

BaseType (page 475) £romName (std::string name)
std::string toName (BaseType (page 475) b)
std::size_t size (Type (page 475) t)

BaseType (page 475) base (Type (page 475) t)

14.3. API

475

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

std::string interpretationName (7ype (page 475) dimtype)
Get a string reresentation of a datatype.
Return String representation of dimension type.
Parameters
* dimtype: Dimension (page 474) type.
Type (page 475) type (std::string s)
Get the type corresponding to a type name.
Return Corresponding type enumeration value.

Parameters

* s: Name of type.

Type (page 475) type (const std::string &baseType, size_t size)

std::size_t ext ractName (const std::string &s, std::string::size_type p)
Extract a dimension name of a string.

Dimension (page 474) names start with an alpha and continue with numbers or
underscores.

Return Number of characters in the extracted name.
Parameters
* s: String from which to extract dimension name.

* p: Position at which to start extracting.

std::istream &operator>> (std::istream &in, Dimension (page 474)::Type
(page 475) &type)

std::ostream &operator<< (std::ostream &out, const Dimension
(page 474)::Type (page 475) &type)

Variables

const int COUNT = (std::numeric_limits<uint16_t>::max)()

const int PROPRIETARY = 0xF000

476 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

pdal: :Extractor

class pdal::Extractor
Buffer wrapper for input of binary data from a buffer.

Subclassed by pdal::BeExtractor, pdal::LeExtractor, pdal::SwitchableExtractor

Public Functions

Extractor (const char *buf, std::size_t size)
Construct an extractor to operate on a buffer.

Parameters
e buf: Buffer to extract from.

e size: Buffer size.

operator bool ()
Determine if the buffer is good.

Return Whether the buffer is good.

void seek (std::size_t pos)
Seek to a position in the buffer.

Parameters

* pos: Position to seek in buffer.

void skip (std::size_t cnt)
Advance buffer position.

Parameters

* cnt: Number of bytes to skip in buffer.

size_tposition () const
Return the get position of buffer.

Return Get position.

bool good () const
Determine whether the extractor is good (the get pointer is in the buffer).

14.3. API 477

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Return Whether the get pointer is valid.

void get (std::string &s, size_t size)
Extract a string of a particular size from the buffer.

Trim trailing null bytes.

Parameters
* s: String to extract to.

* size: Number of bytes to extract from buffer into string.

void get (std::vector<char> &buf)
Extract data to char vector.

Vector must be sized to indicate number of bytes to extract.

Parameters

* buf: Vector to which bytes should be extracted.

void get (std::vector<unsigned char> &buf’)
Extract data to unsigned char vector.

Vector must be sized to indicate number of bytes to extract.

Parameters

* buf: Vector to which bytes should be extracted.
void get (char *buf, size_t size)
Extract data into a provided buffer.
Parameters
* buf: Pointer to buffer to which bytes should be extracted.
* size: Number of bytes to extract.
void get (unsigned char *buf, size_t size)
Extract data into a provided unsigned buffer.
Parameters

* buf: Pointer to buffer to which bytes should be extracted.

* size: Number of bytes to extract.

478 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

virtual Extractor (page 477) &operator>> (uint8_t &v) =0
virtual Extractor (page 477) &operator>> (int8_t &v) =0
virtual Extractor (page 477) &operator>> (uintl6_t &v) =0
virtual Extractor (page 477) &operator>> (intl6_t &v) =0
virtual Extractor (page 477) &operator>> (uint32_t &v) =0
virtual Extractor (page 477) &operator>> (int32_t &v) =0
virtual Extractor (page 477) &operator>> (uint64_t &v) =0
virtual Extractor (page 477) &operator>> (int64_t &v) =0
virtual Extractor (page 477) &operator>> (float &v) =0

virtual Extractor (page 477) &operator>> (double &v) =0

pdal: :FileUtils

namespace pdal::FileUtils

Functions

PDAL_DLL std::istream x pdal::FileUtils::openFile(std::string const &
Open an existing file for reading.
Return Pointer to opened stream.
Parameters
* filename: Filename.
* asBinary: Read as binary file (don’t convert /r/n to /n)
PDAL_DLL std::ostream * pdal::FileUtils: :createFile(std::string const
Create a file and open for writing.
Return Point to opened stream.
Parameters
e filename: Filename.
* asBinary: Write as binary file (don’t convert /n to /r/n)

PDAL_DLL bool pdal::FileUtils::directoryExists (const std::string & di:
Determine if a directory exists.

14.3. API 479

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Return Whether a directory exists.
Parameters
* dirname: Name of directory.
PDAL_DLL bool pdal::FileUtils::createDirectory(const std::string & dirn
Create a directory.
Return Whether the directory was created.
Parameters
* dirname: Directory name.
PDAL_DLL bool pdal::FileUtils::createDirectories (const std::string & pa
Create all directories in the provided path.
Return on failure
Parameters
* dirname: Path name.
PDAL_DLL void pdal::FileUtils::deleteDirectory(const std::string & dirn
Delete a directory and its contents.
Parameters
e dirname: Directory name.
PDAL_DLL std::vector< std::string > pdal::FileUtils: :directoryList (cons:
List the contents of a directory.
Return List of entries in the directory.
Parameters
* dirname: Name of directory to list.
PDAL_DLL void pdal::FileUtils::closeFile(std::ostream * ofs)
Close a file created with createFile.
Parameters
* ofs: Pointer to stream to close.
PDAL_DLL void pdal::FileUtils::closeFile(std::istream * ifs)
Close a file created with openFile.
Parameters

e ifs: Pointer to stream to close.

480

Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

PDAL_DLL bool pdal::FileUtils::deleteFile(const std::string & filename
Delete a file.
Return true if successful, false otherwise
Parameters
e filename: Name of file to delete.
PDAL_DLL void pdal::FileUtils::renameFile(const std::string & dest, c«
Rename a file.
Parameters
* dest: Desired filename.
* src: Source filename.
PDAL_DLL bool pdal::FileUtils::fileExists(const std::string & filenams
Determine if a file exists.
Return Whether the file exists.
Parameters
* Filename.:
PDAL_DLL uintmax_t pdal::FileUtils::fileSize(const std::string & filer
Get the size of a file.
Return Size of file.
Parameters
e filename: Filename.
PDAL DLL std::string pdal::FileUtils::readFileIntoString(const std: :s
Read a file into a string.
Return File contents as a string
Parameters
e filename: Filename.
PDAL_DLL std::string pdal::FileUtils::getcwd()
Get the current working directory with trailing separator.
Return The current working directory.

PDAL_DLL std::string pdal::FileUtils::toAbsolutePath (const std::strine
If the filename is an absolute path, just return it otherwise, make it absolute
(relative to current working dir) and return it.

14.3. API 481

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Return Absolute version of provided filename.
Parameters
e filename: Name of file to convert to absolute path.

PDAL_DLL std::string pdal::FileUtils::toAbsolutePath(const std::string
If the filename is an absolute path, just return it otherwise, make it absolute
(relative to base dir) and return that.
Return Absolute version of provided filename relative to base.
Parameters
* filename: Name of file to convert to absolute path.

* base: Base name to use.

PDAL_DLL std::string pdal::FileUtils: :getFilename (const std::string & p.
Return the file component of the given path, e.g.

“d:/foo/bar/a.c” -> “a.c”

Return File part of path.
Parameters
* path: Path from which to extract file component.

PDAL_DLL std::string pdal::FileUtils::getDirectory(const std::string &
Return the directory component of the given path, e.g.

“d:/foo/bar/a.c” -> “d:/foo/bar/”

Return Directory part of path.
Parameters
* path: Path from which to extract directory component.

PDAL_DLL std::string pdal::FileUtils::stem(const std::string & path)
Return the filename stripped of the extension.

. and .. are returned unchanged.

Return Stem of filename.
Parameters
* path: File path from which to extract file stem.

PDAL_DLL bool pdal::FileUtils::isDirectory (const std::string & path)
Determine if path is a directory.

482 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Return Whether the path represents a directory.
Parameters
* path: Directory to check.
PDAL_DLL bool pdal::FileUtils::isAbsolutePath(const std::string & patl
Determine if the path is an absolute path.
Return Whether the path is absolute.
Parameters
* path: Path to test.
PDAL_DLL void pdal::FileUtils::fileTimes (const std::string & filename,
Get the file creation and modification times.
Parameters
e filename: Filename.
* createTime: Pointer to creation time structure.
* modTime: Pointer to modification time structure.
PDAL_DLL std::string pdal::FileUtils::extension(const std::string & p:
Return the extension of the filename, including the separator (.).
Return Extension of filename.
Parameters
* path: File path from which to extract extension.
PDAL_DLL std::vector< std::string > pdal::FileUtils::glob(std::string
Expand a filespec to a list of files.
Return List of files that correspond to provided file specification.
Parameters

» filespec: File specification to expand.

pdal: :Filter

class pdal::Filter
Inherits from pdal::Stage (page 500)

Subclassed by pdal::ApproximateCoplanarFilter, pdal::AssignFilter, pdal::ChipperFilter,
pdal::ClusterFilter, pdal::ColorinterpFilter, pdal::ColorizationFilter,
pdal::CovarianceFeaturesFilter, pdal::CpdFilter, pdal::CropFilter, pdal::CSFilter,

14.3. API 483

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal::
pdal::
pdal::
pdal:
pdal:

:DBSCANFilter, pdal::DecimationFilter, pdal::DelaunayFilter, pdal:: DEMFilter,
:DividerFilter, pdal::EigenvaluesFilter, pdal::ELMFilter, pdal::EstimateRankFilter,
:FarthestPointSamplingFilter, pdal::FerryFilter, pdal::GreedyProjection,
:GroupByFilter, pdal::HagDelaunayFilter, pdal::HagDemFilter, pdal:: HAGFilter,
:HagNnFilter, pdal::HeadFilter, pdal::HexBin, pdal::InfoFilter, pdal::IQRFilter,
:IterativeClosestPoint, pdal::LocateFilter, pdal::LOFFilter, pdal::MADFilter,
:MatlabFilter, pdal::MergeFilter, pdal::MiniballFilter, pdal::MongoExpressionFilter,
:MortonOrderFilter, pdal::NeighborClassifierFilter, pdal::NNDistanceFilter,
:NormalFilter, pdal::OutlierFilter, pdal::OverlayFilter, pdal::PlaneFitFilter,
:PMFFilter, pdal::PoissonFilter, pdal::ProjPipelineFilter, pdal::RadialDensityFilter,
:RandomizeFilter, pdal::RangeFilter, pdal::ReciprocityFilter,

:ReprojectionFilter, pdal::ReturnsFilter, pdal::SampleFilter,

SeparateScanLineFilter, pdal::ShellFilter, pdal::SkewnessBalancingFilter,
SMRFilter, pdal::SortFilter, pdal::SplitterFilter, pdal::StatsFilter,
StreamCallbackFilter, pdal:: TailFilter, pdal::TransformationFilter,

:VoxelCenterNearestNeighborFilter, pdal::VoxelCentroidNearestNeighborFilter,
:VoxelDownsizeFilter, SplitFilter

Public Functions

Filter ()

pdal: :IStream

class pdal::IStream
Stream wrapper for input of binary data.

Subclassed by pdal::IBeStream, pdal::ILeStream, pdal::ISwitchableStream

Public Functions

PDAL DLL IStream/()

Default constructor.

PDAL_DLL IStream (const std::string &filename)

Construct an /Stream (page 484) from a filename.

Parameters

e filename: File from which to read.

PDAL_DLL IStream (std::istream *stream)

Construct an /Stream (page 484) from an input stream pointer.

484

Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Parameters

e stream: Stream from which to read.

PDAL DLL ~IStream /()
PDAL_DLL int pdal::IStream: :open(const std::string & filename)
Open a file to extract.
Return -1 if a stream is already assigned, O otherwise.
Parameters
* filename: Filename.

PDAL_DLL void pdal::IStream: :close()
Close the underlying stream.

PDAL_DLL operator bool ()
Return the state of the stream.
Return The state of the underlying stream.
PDAL_DLL void pdal::IStream: :seek(std: :streampos pos)
Seek to a position in the underlying stream.
Parameters
* pos: Position to seek to,
PDAL_ DLL void pdal::IStream: :seek(std::streampos off, std::ios_base: ::
Seek to an offset from a specified position.
Parameters
* of f: Offset.
* way: Absolute position for offset (beg, end or cur)
PDAL_DLL void pdal::IStream: :skip(std::streamoff offset)
Skip relative to the current position.
Parameters
* offset: Offset from the current position.
PDAL_DLL std::streampos pdal::IStream: :position() const

Determine the position of the get pointer.

Return Current get position.

14.3. API 485

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

PDAL_DLL bool pdal::IStream::good() const
Determine if the underlying stream is good.
Return Whether the underlying stream is good.
PDAL_DLL std::istreamx pdal::IStream: :stream()
Fetch a pointer to the underlying stream.
Return Pointer to the underlying stream.
PDAL_DLL void pdal::IStream: :pushStream(std::istream * strm)
Temporarily push a stream to read from.
Parameters
* strm: New stream to read from.

PDAL_DLL std::istreamx pdal::IStream: :popStream/()
Pop the current stream and return it.

The last stream on the stack cannot be popped.

Return Pointer to the popped stream.

PDAL_DLL void pdal::IStream: :get (std::string & s, size_t size)
Fetch data from the stream into a string.

NOTE - Stops when a null byte is encountered. Use a buffer/vector reader to read
data with embedded nulls.
Parameters
* s: String to fill.
* size: Maximum number of bytes to extract.
PDAL_DLL void pdal::IStream: :get (std::vector< char > & buf)
Fetch data from the stream into a vector of char.
Parameters
e buf: Buffer to fill.
PDAL_DLL void pdal::IStream: :get (std::vector< unsigned char > & buf)
Fetch data from the stream into a vector of unsigned char.
Parameters
* buf: Buffer to fill.

PDAL_DLL void pdal::IStream: :get (char * buf, size_t size)
Fetch data from the stream into the specified buffer of char.

486 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Parameters
* buf: Buffer to fill.
* size: Number of bytes to extract.

PDAL_DLL void pdal::IStream: :get (unsigned char x buf, size_t size)
Fetch data from the stream into the specified buffer of unsigned char.

Parameters
e buf: Buffer to fill.

* size: Number of bytes to extract.

pdal: :Log

class pdal::Log
pdal::Log (page 487) is a logging object that is provided by pdal::Stage (page 500) to
facilitate logging operations.

Destructor

~Log ()
The destructor will clean up its own internal log stream, but it will not touch one
that is given via the constructor.

Logging level

Loglevel getLevel ()
Return the logging level of the pdal::Log (page 487) instance

void setLevel (LoglLevel v)
Sets the logging level of the pdal::Log (page 487) instance.

Parameters

* v: logging level to use for get() (page 488) comparison operations

void setLeader (const std::string &leader)
Set the leader string (deprecated).

Parameters

* leader: Leader string.

14.3. API 487

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

void pushLeader (const std::string &leader)
Push the leader string onto the stack.

Parameters

* leader: Leader string

std::string 1leader () const
Get the leader string.

Return The current leader string.
void popLeader ()
Pop the current leader string.

std::string getLevelString (Loglevel v) const

Return A string representing the LoglLevel

Log stream operations

std::ostream *getLogStream ()

Return the stream object that is currently being used to for log operations
regardless of logging level of the instance.

std::ostream &get (Loglevel level = Loglevel::Info)
Returns the log stream given the logging level.
Parameters

* level: logging level to request If the logging level asked for with
pdal::Log::get (page 488) is less than the logging level of the pdal::Log
(page 487) instance

void f£loatPrecision (int level)
Sets the floating point precision.

void clearFloat ()
Clears the floating point precision settings of the streams.

Public Static Functions

LogPtr makeLog (std::string const &leaderString, std::string const &output-
Name, bool timing = false)

488 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

LogPtr makeLog (std::string const &leaderString, std::ostream *v, bool timing =
false)

pdal: :Metadata

class pdal: :Metadata

Public Functions

Metadata ()
Metadata (const std::string &name)

MetadataNode (page 489) getNode () const

Public Static Functions

std::string inferType (const std::string &val)

class pdal: :MetadataNode

Public Functions

MetadataNode ()

MetadataNode (const std::string &name)

MetadataNode (page 489) add (const std::string &name)
MetadataNode (page 489) addList (const std::string &name)
MetadataNode (page 489) clone (const std::string &name) const
MetadataNode (page 489) add (MetadataNode (page 489) node)
MetadataNode (page 489) addList (MetadataNode (page 489) node)

MetadataNode (page 489) addEncoded (const std::string &name, const un-
signed char *buf, size_t size, const
std::string &descrip = std::string())

MetadataNode (page 489) addListEncoded (const std::string &name,
const unsigned char *buf, size_t
size, const std::string &descrip
= std::string())

14.3. API 489

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

MetadataNode (page 489) addWithType (const std::string &name, const
std::string &value, const std::string
&type, const std::string &descrip)

MetadataNode (page 489) add (const std::string &name, const double &value,
const std::string &descrip = std::string(), size_t
precision = 10)
template <typename T>
MetadataNode (page 489) add (const std::string &name, const T &value,
const std::string &descrip = std::string())
template <typename T>
MetadataNode (page 489) addList (const std:string &name, const T
&value, const std:string &descrip =
std::string())

MetadataNode (page 489) addOrUpdate (const std::string &lname, const
double &value, const std::string
&descrip = std::string(), size_t preci-
sion = 10)

template <typename T>

MetadataNode (page 489) addOrUpdate (const std::string &/name, const T

&value)
template <typename T>

MetadataNode (page 489) addOrUpdate (const std::string &/name, const T
&value, const std::string &descrip)

MetadataNode (page 489) addOrUpdate (MetadataNode (page 489) n)
std::string type () const
MetadataType kind () const

std::string name () const

template <typename T>
T value () const

std::string value () const

std::string jsonValue () const

std::string description () const

MetadataNodeList children () const

MetadataNodeList children (const std::string &name) const
bool hasChildren () const

std::vector<std::string> childNames () const

490 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

operator bool () const
bool operator! ()
bool valid () const

bool empty () const

template <typename PREDICATE>
MetadataNode (page 489) £ind (PREDICATE p) const

template <typename PREDICATE>
MetadataNodeList £indChildren (PREDICATE p)

template <typename PREDICATE>
MetadataNode (page 489) £indChild (PREDICATE p) const

MetadataNode (page 489) £indChild (const char *s) const

MetadataNode (page 489) £indChild (std::string s) const

pdal: :Options

class pdal: :Options

Public Functions

Options ()

Options (const Option &opt)

void add (const Option &option)

void add (const Options (page 491) &options)

void addConditional (const Option &option)

void addConditional (const Options (page 491) &option)
void remove (const Option &option)

void replace (const Option &option)

void toMetadata (MetadataNode (page 489) &parent) const

template <typename T>
void add (const std::string &name, T value)

void add (const std::string &name, const std::string &value)

void add (const std::string &name, const bool &value)

14.3. API 491

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

template <typename T>
void replace (const std::string &name, T value)

void replace (const std::string &name, const std::string &value)

void replace (const std::string &name, const bool &value)

StringList getValues (const std::string &name) const

StringList getKeys () const

std::vector<Option> getOptions (std::string const &name ="") const

Stringlist toCommandLine () const
Convert options to a string list appropriate for parsing with ProgramArgs
(page 496).

Return List of options as argument strings.

Public Static Functions

Options (page 491) fromFile (const std::string &filename, bool throwOnOpen-
Error = true)

pdal: :PointTable

class pdal::PointTable
Inherits from pdal::SimplePointTable

Public Functions

PointTable ()
~PointTable ()

virtual bool supportsView () const

pdal: :PointView

class pdal::PointView
Inherits from pdal::PointContainer

492 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Public Functions

PointView (const PointView (page 493)&)

PointView (page 492) &operator= (const PointView (page 492)&)
PointView (PointTableRef pointTable)

PointView (PointTableRef pointTable, const SpatialReference &srs)
~PointView ()

PointViewlter begin ()

PointViewlter end ()

int id () const

point_count_t size () const

bool empty () const

void appendPoint (const PointView (page 492) &buffer, Pointld id)
void append (const PointView (page 492) &buf)

PointViewPtr makeNew () const
Return a new point view with the same point table as this point buffer.

PointRef point (Pointld id)

template <class T>
T getFieldAs (Dimension (page 474)::1d dim, Pointld pointIndex) const

void getField (char *pos, Dimension (page 474):Id d, Dimension
(page 474)::Type (page 475) type, Pointld id) const

template <typename T>

void setField (Dimension (page 474)::1d dim, Pointld idx, T val)

void setField (Dimension (page 474):1d dim, Dimension (page 474)::Type
(page 475) type, Pointld idx, const void *val)

template <typename T>

bool compare (Dimension (page 474)::1d dim, Pointld id, Pointld id2) const

virtual bool compare (Dimension (page 474)::1d dim, Pointld idl, Pointld
id2) const

void getRawField (Dimension (page 474)::1d dim, Pointld idx, void *buf)
const

void calculateBounds (BOX2D (page 465) &box) const

14.3. API 493

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Return a cumulated bounds of all points in the PointView (page 492).

Note: This method requires that an X, Y, and Z dimension be available, and
that it can be casted into a double data type using the
pdal::Dimension: :applyScaling () method. Otherwise, an
exception will be thrown.

void calculateBounds (BOX3D (page 469) &box) const
void dump (std::ostream &ostr) const

bool hasDim (Dimension (page 474)::1d id) const
std::string dimName (Dimension (page 474)::1d id) const
Dimension (page 474)::1dList dims () const

std::size_t pointSize () const

std::size_t dimSize (Dimension (page 474)::1d id) const

Dimension (page 474)::Type (page 475) dimType (Dimension (page 474)::1d id)
const

DimTypeList dimTypes () const

PointLayoutPtr layout () const

PointTableRef table () const

SpatialReference spatialReference () const

void getPackedPoint (const DimTypeList &dims, Pointld idx, char *buf)

. . . const) L.
Fill a buffer with point data specified by the dimension list.

Parameters
e dims: List of dimensions/types to retrieve.
* idx: Index of point to get.

e buf: Pointer to buffer to fill.

void setPackedPoint (const DimTypeList &dims, Pointld idx, const char
*buf)
Load the point buffer from memory whose arrangement is specified by the
dimension list.

494 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Parameters
* dims: Dimension/types of data in packed order
* idx: Index of point to write.

e buf: Packed data buffer.

char *getPoint (Pointld id)
Provides access to the memory storing the point data.

Though this function is public, other access methods are safer and preferred.

char *getOrAddPoint (Pointld id)
Provides access to the memory storing the point data.

Though this function is public, other access methods are safer and preferred.
void clearTemps ()
MetadataNode (page 489) toMetadata () const
void invalidateProducts ()

TriangularMesh *createMesh (const std::string &name)
Creates a mesh with the specified name.

Return Pointer to the new mesh. Null is returned if the mesh already exists.
Parameters

e name: Name of the mesh.

TriangularMesh *mesh (const std::string &name ="")
Get a pointer to a mesh.

Return New mesh. Null is returned if the mesh already exists.
Parameters

e name: Name of the mesh.

KD3Index &build3dIndex ()

KD2Index &build2dIndex ()

Friends

friend pdal::PointView: :plang: :Invocation

14.3. API 495

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

pdal: :ProgramArgs
class pdal::ProgramArgs
Parses command lines, provides validation and stores found values in bound variables.

Add arguments with add (page 496). When all arguments have been added, use parse
(page 498) to validate command line and assign values to variables bound with add
(page 496).

Public Functions

Arg &add (const std::string &name, const std::string description, std::string

&var, std::string def’)
Add a string argument to the list of arguments.

Return Reference to the new argument.
Parameters

* name: Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional one-character
abbreviation.

* description: Description of the argument.
» var: Reference to variable to bind to argument.

e def: Default value of argument.

Arg &add (const std:string &name, const std:string &description,

std::vector<std::string> &var)
Add a list-based (vector) string argument.

Return Reference to the new argument.
Parameters

* name: Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional one-character
abbreviation.

e description: Description of the argument.

* var: Reference to variable to bind to argument.

bool set (const std::string &name) const
Return whether the argument (as specified by it’s longname) had its value set
during parsing.

496 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

template <typename T>
Arg &add (const std::string &name, const std::string &description,

std::vector<T> &var)
Add a list-based (vector) argument.

Return Reference to the new argument.
Parameters

* name: Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional one-character
abbreviation.

* description: Description of the argument.

* var: Reference to variable to bind to argument.

template <typename T>
Arg &add (const std:string &name, const std:string &description,

std::vector<T> &var, std::vector<T> def)
Add a list-based (vector) argument with a default.

Return Reference to the new argument.
Parameters

* name: Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional one-character
abbreviation.

* description: Description of the argument.

» var: Reference to variable to bind to argument.

template <typename T>
Arg &add (const std::string &name, const std::string description, T &var, T

def)
Add an argument to the list of arguments with a default.

Return Reference to the new argument.
Parameters

* name: Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional one-character
abbreviation.

* description: Description of the argument.
» var: Reference to variable to bind to argument.

* def: Default value of argument.

14.3. API 497

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

template <typename T>

Arg &add (const std::string &name, const std::string description, T &var)
Add an argument to the list of arguments.
Return Reference to the new argument.

Parameters

* name: Name of argument. Argument names are specified as
“longname[,shortname]”, where shortname is an optional one-character
abbreviation.

e description: Description of the argument.

» var: Reference to variable to bind to argument.

void parseSimple (std::vector<std::string> &s)
Parse a command line as specified by its argument vector.

No validation occurs and only argument value exceptions are raised, but
assignments are made to bound variables where possible.
Parameters

* s: List of strings that constitute the argument list.

void parse (const std::vector<std::string> &s)
Parse a command line as specified by its argument list.

Parsing validates the argument vector and assigns values to variables bound to
added arguments.
Parameters

 s: List of strings that constitute the argument list.

void addSynonym (const std::string &name, const std::string &synonym)
Add a synonym for an argument.
Parameters
* name: Longname of existing arugment.

e synonym: Synonym for argument.

void reset ()
Reset the state of all arguments and bound variables as if no parsing had occurred.

498 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

std::string commandLine () const
Return a string suitable for use in a “usage” line for display to users as help.

void dump (std::ostream &out, size_t indent, size_t totalWidth) const
Write a formatted description of arguments to an output stream.

Write a list of the names and descriptions of arguments suitable for display as help
information.
Parameters

* out: Stream to which output should be written.

¢ indent: Number of characters to indent all text.

* totalWidth: Total width to assume for formatting output. Typically
this is the width of a terminal window.

void dump?2 (std::ostream &out, size_t namelndent, size_t descripIndent, size_t to-

. talWidth) const
Write a verbose description of arguments to an output stream.

Each argument is on its own line. The argument’s description follows on
subsequent lines.
Parameters

* out: Stream to which output should be written.

* nameIndent: Number of characters to indent argument lines.

* descripIndent: Number of characters to indent description lines.

e totalWidth: Total line width.

void dump3 (std::ostream &out) const
Write a JSON array of arguments to an output stream.

Parameters

* out: Stream to which output should be written.
pdal: :Reader
pdal::Reader (page 499) are classes that provided interfaces to various the various point

cloud formats and hands them off to a PDAL pipeline in a common format that is described via
the pdal: : Schema.

14.3. API 499

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

class pdal: :Reader

Inherits from pdal::Stage (page 500)

Subclassed by pdal::BpfReader, pdal::BufferReader, pdal::DbReader, pdal::ES7Reader,
pdal::EptReader, pdal::EsriReader, pdal::FauxReader, pdal:: GDALReader,
pdal::GeoWaveReader, pdal::HdfReader, pdal::IcebridgeReader, pdal::Ilvis2Reader,
pdal::LasReader, pdal::MatlabReader, pdal::MbReader, pdal::MemoryViewReader,
pdal::MrsidReader, pdal::OptechReader, pdal::OSGReader, pdal::PcdReader,
pdal::PlyReader, pdal::PtsReader, pdal::QfitReader, pdal::RdbReader, pdal::RxpReader,
pdal::SbetReader, pdal::TerrasolidReader, pdal::TextReader, pdal::TileDBReader,

pdal:: TIndexReader

pdal: :Stage

pdal: :Stage (page 500) is the base class of pdal: :Filter (page 483),
pdal: :Reader (page 499), and pdal: :MultiFilter classes that implement the
reading API in a PDAL pipeline.

class pdal: :Stage

A stage performs the actual processing in PDAL.
Stages may read data, modify or filter read data, create metadata or write processed data.

Stages are linked with set/nput() (page 500) into a pipeline. The pipeline is run with by
calling in sequence prepare() (page 501) and execute() (page 501) on the stage at the end
of the pipeline. PipelineManager can also be used to create and run a pipeline.

Subclassed by pdal:: Filter (page 483), pdal::Reader (page 499), pdal::Streamable,
pdal::Writer (page 526)

Public Functions

Stage ()
~Stage ()

void setInput (Stage (page 500) &input)
Add a stage to the input list of this stage.

Parameters

* input: Stage (page 500) to use as input.

void setProgressFd (int fd)
Set a file descriptor to which progress information should be written.

500

Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Parameters

* fd: Progress file descriptor.

QuickInfo preview ()
Retrieve some basic point information without reading all data when possible.

Usually implemented only by Readers.

void prepare (PointTableRef rable)
Prepare a stage for execution.

This function needs to be called on the terminal stage of a pipeline (linked set of
stages) before execute (page 501) can be called. Prepare recurses through all input
stages.

Parameters
* table: PointTable (page 492) being used for stage pipeline.
PointViewSet execute (PointTableRef table)
Execute a prepared pipeline (linked set of stages).

This performs the action associated with the stage by executing the run function of
each stage in depth first order. Each stage is run to completion (all points are
processed) before the next stages is run.o

Parameters

* table: Point table being used for stage pipeline. This must be the same
table used in the prepare (page 501) function.

virtual void execute (StreamPointTable &rable)

virtual bool pipelineStreamable () const
Determine if a pipeline with this stage as a sink is streamable.

Return Whether the pipeline is streamable.

virtual const Srage (page 500) *£findNonstreamable () const
Return a pointer to a pipeline’s first non-streamable stage, if one exists.

Return nullptr if the stage is streamable, a pointer to this stage otherwise.

void setSpatialReference (SpatialReference const &srs)
Set the spatial reference of a stage.

14.3. API 501

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Set the spatial reference that will override that being carried by the PointView
(page 492) being processed. This is usually used when reprojecting data to a new
spatial reference. The stage spatial reference will be carried by PointViews
processes by this stage to subsequent stages.

If called by a Reader (page 499) whose spatial reference has been set with option
‘spatialreference’ or ‘override_srs’, then this function will have no effect.
Parameters

* srs: Spatial reference to set.

const SpatialReference &getSpatialReference () const
Get the spatial reference of the stage.

Get the spatial reference that will override that being carried by the PointView
(page 492) being processed. This is usually used when reprojecting data to a new
spatial reference. The stage spatial reference will be carried by PointViews
processes by this stage to subsequent stages.

Return The stage’s spatial reference.

void setOptions (Options (page 491) options)
Set a stage’s options.

Set the options on a stage, clearing all previously set options.

Parameters

* options: Options (page 491) to set.

void addConditionalOptions (const Oprions (page 491) &opts)
Add options if an option with the same name doesn’t already exist on the stage.

Parameters

* opts: Options (page 491) to add.

void addAl1Args (ProgramArgs (page 496) &args)
Add a stage’s options to a ProgramArgs (page 496) set.

Parameters

* args: ProgramArgs (page 496) to add to.

void addOptions (const Options (page 491) &opts)
Add options to the existing option set.

502 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Parameters

* opts: Options (page 491) to add.

void removeOptions (const Options (page 491) &opts)
Remove options from a stage’s option set.

Parameters

* opts: Options (page 491) to remove.

void setLog (const LogPtr &log)
Set the stage’s log.

Parameters

* log: Log (page 487) pointer.

virtual LogPtr log () const
Return the stage’s log pointer.

Return Log (page 487) pointer.

void startLogging () const
Push the stage’s leader into the log.

void stopLogging () const
Pop the stage’s leader from the log.

bool isDebug () const
Determine whether the stage is in debug mode or not.

Return The stage’s debug state.

virtual std::string getName () const =0
Return the name of a stage.

Return The stage’s name.

void setTag (const std::string &tag)
Set a specific tag name.

virtual std::string tag () const
Return the tag name of a stage.

Return The tag name.

14.3. API

503

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

std::vector<Stage (page 500) *> &getInputs ()
Return a list of the stage’s inputs.

Return A vector pointers to input stages.

MetadataNode (page 489) getMetadata () const
Get the stage’s metadata node.

Return Stage (page 500)’s metadata.

void serialize (MetadataNode (page 489) root, PipelineWriter::TagMap

&tags) const
Serialize a stage by inserting apporpritate data into the provided MetadataNode

(page 489).

Used to dump a pipeline specification in a portable format.

Parameters
* root: Node to which a stages metadata should be added.

* tags: Pipeline writer’s current list of stage tags.

Public Static Functions

bool parseName (std::string o, std::string::size_type &pos)
Parse a stage name from a string.

Return the name and update the position in the input string to the end of the stage
name.
Return Whether the parsed name is a valid stage name.
Parameters
* o: Input string to parse.
* pos: Parsing start/end position.
bool parseTagName (std::string o, std::string::size_type &pos)
Parse a tag name from a string.
Return the name and update the position in the input string to the end of the tag
name.
Return Whether the parsed name is a valid tag name.

Parameters

504 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

* o: Input string to parse.
* pos: Parsing start/end position.

* tag: Parsed tag name.

pdal: :StageFactory

class pdal::StageFactory
This class provides a mechanism for creating Stage (page 500) objects given a driver
name.

Creates stages are owned by the factory and destroyed when the factory is destroyed.

Stages can be explicitly destroyed with destroyStage() (page 505) if desired.

Note Srage (page 500) creation is thread-safe.

Public Functions

StageFactory (bool ignored = true)
Create a stage factory.
Parameters

* ignored: Ignored argument.

Stage (page 500) *createStage (const std::string &type)
Create a stage and return a pointer to the created stage.

The factory takes ownership of any successfully created stage.

Return Pointer to created stage.
Parameters
* stage_name: Type of stage to by created.
void destroyStage (Stage (page 500) *stage)
Destroy a stage created by this factory.

This doesn’t need to be called unless you specifically want to destroy a stage as all
stages are destroyed when the factory is destroyed.

Parameters

* stage: Pointer to stage to destroy.

14.3. API 505

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Public Static Functions

std::string inferReaderDriver (const std::string &filename)
Infer the reader to use based on a filename.

Find the default reader for a file.

Return Driver name or empty string if no reader can be inferred from the filename.
Return Name of the reader driver associated with the file.
Parameters

e filename: Filename that should be analyzed to determine a driver.
Parameters

e filename: Filename for which to infer a reader.

std::string inferWriterDriver (const std::string &filename)
Infer the writer to use based on filename extension.

Find the default writer for a file.

Return Driver name or empty string if no writer can be inferred from the filename.
Return Name of the writer driver associated with the file.
Parameters

e filename: Filename for which to infer a writer.

pdal: :Utils

:cpp:namespace:‘pdal::Utils® is a set of utility functions.

namespace pdal::Utils

Typedefs

using pdal: :Utils: :BacktraceEntries = typedef std::deque<BacktraceEntry

Functions

template <>
template<>

506

Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

bool fromString<Eigen::MatrixXd> (const std::string &s, Eigen::MatrixXd
&matrix)

std: :string PDAL DLL pdal::Utils::toJSON(const MetadataNode & m)
void PDAL_DLL pdal::Utils::toJSON(const MetadataNode & m, std::ostre
std: :ostream PDAL_DLL % pdal::Utils::createFile(const std::string & p:
Create a file (may be on a supported remote filesystem).
Return Pointer to the created stream, or NULL.
Parameters
e path: Path to file to create.
* asBinary: Whether the file should be written in binary mode.
bool PDAL_DLL pdal::Utils::isRemote (const std::string & path)
Open a file (potentially on a remote filesystem).
Return Pointer to stream opened for input.
Parameters
* path: Path (potentially remote) of file to open.
* asBinary: Whether the file should be opened binary.
std: :string PDAL_DLL pdal::Utils::fetchRemote (const std::string & patl
std: :istream PDAL_DLL * pdal::Utils::openFile(const std::string & patl
void PDAL_DLL pdal: :Utils::closeFile(std::ostream x out)
Close an output stream.
Parameters
* out: Stream to close.
void PDAL _DLL pdal::Utils::closeFile(std::istream * in)
Close an input stream.
Parameters
* out: Stream to close.
bool PDAL_ DLL pdal::Utils::fileExists (const std::string & path)
Check to see if a file exists.
Return Whether the file exists or not.

Parameters

14.3. API 507

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

* path: Path to file.

double PDAL_DLL pdal::Utils::computeHausdorff (PointViewPtr srcView, Poi.
void printError (const std::string &s)

double toDouble (const Everything &e, Dimension (page 474)::Type

(page 475) type)
template <typename INPUT>
Everything extractDim (INPUT &ext, Dimension (page 474)::Type (page 475)

type)
template <typename OUTPUT>
void insertDim (OUTPUT &ins, Dimension (page 474)::Type (page 475) type,
const Everything &e)

MetadataNode (page 489) toMetadata (const BOX2D (page 465) &bounds)
MetadataNode (page 489) toMetadata (const BOX3D (page 469) &bounds)
int openProgress (const std::string &filename)

void closeProgress (int fd)

void writeProgress (int fd, const std::string &type, const std::string &text)

std: :vector<std: :string> PDAL_DLL pdal: :Utils: :maybeGlob (const std::str

template <>
template<>
bool £fromSt ring<SrsBounds> (const std::string &s, SrsBounds &srsBounds)

template <typename CONTAINER, typename VALUE>

bool contains (const CONTAINER &cont, const VALUE &val)
Determine if a container contains a value.
Return true if the value is in the container, false otherwise.
Parameters

e cont: Container.

e val: Value.

template <typename KEY, typename VALUE>

bool contains (const std::map<KEY, VALUE> &c, const KEY &v)
Determine if a map contains a key.
Return true if the value is in the container, fal se otherwise.

Parameters

e c: Map.

508 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

* v: Key value.

template <typename CONTAINER, typename VALUE>

void remove (CONTAINER &cont, const VALUE &val)
Remove all instances of a value from a container.
Parameters

e cont: Container.

e v: Value to remove.

template <typename CONTAINER, typename PREDICATE>
void remove_if (CONTAINER &cont, PREDICATE p)
Remove all instances matching a unary predicate from a container.
Parameters
* cont: Container.
* p: Predicate indicating whether a value should be removed.
PDAL_DLL std::vector< std::string > pdal::Utils::backtrace()

Generate a backtrace as a list of strings.

Return List of functions at the point of the call.

Utils (page 506)::BacktraceEntries backtraceImpl ()

template <class T>
PDAL_DLL const T& pdal::Utils::clamp(const T & t, const T & minimum, «
Clamp value to given bounds.

Clamps the input value t to bounds specified by min and max. Used to ensure that
row and column indices remain within valid bounds.
Return the value to clamped to the given bounds.
Parameters
* t: the input value.
* min: the lower bound.

* max: the upper bound.

void random_seed (unsigned int seed)
Set a seed for random number generation.

Parameters

14.3. API 509

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

e seed: Seed value.

double random (double minimum, double maximum)
Generate a random value in the range [minimum, maximum].
Parameters
e minimum: Lower value of range for random number generation.

* maximum: Upper value of range for random number generation.

double uniform (const double &minimum, const double &maximum, uint32_t

seed)
Generate values in a uniform distribution in the range [minimum, maximum] using

the provided seed value.

Parameters
* double: Lower value of range for random number generation.
* double: Upper value of range for random number generation.

* seed: Seed value for random number generation.

double normal (const double &mean, const double &sigma, uint32_t seed)
Generate values in a normal distribution in the range [minimum, maximum] using
the provided seed value.

Parameters
* double: Lower value of range for random number generation.
* double: Upper value of range for random number generation.
* seed: Seed value for random number generation.

PDAL_DLL bool pdal::Utils::compare_approx(double vl, double v2, double -
Determine if two values are within a particular range of each other.
Parameters

* v1: First value to compare.
* v2: Second value to compare.

e tolerance: Maximum difference between v1 and v2

double sround (double r)
Round double value to nearest integral value.

510 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Return Rounded value
Parameters

e r: Value to round

std::string tolower (const std::string &s)
Convert a string to lowercase.

Return Converted string.

std::string toupper (const std::string &s)
Convert a string to uppercase.

Return Converted string.

bool iequals (const std::string &s, const std::string &s2)
Compare strings in a case-insensitive manner.
Return Whether the strings are equal.
Parameters
* s: First string to compare.

* s2: Second string to compare.

bool startsWith (const std::string &s, const std::string &prefix)
Determine if a string starts with a particular prefix.
Return Whether the string begins with the prefix.
Parameters
* s: String to check for prefix.

* prefix: Prefix to search for.

bool endsWith (const std::string &s, const std::string &postfix)
Determine if a string ends with a particular postfix.
Return Whether the string ends with the postfix.
Parameters
* s: String to check for postfix.

* post fix: Postfix to search for.

14.3. API 511

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

int cksum (char *buf, size_t size)
Generate a checksum that is the integer sum of the values of the bytes in a buffer.
Return Generated checksum.
Parameters
* buf: Pointer to buffer.

e size: Size of buffer.

int getenv (std::string const &name, std::string &val)
Fetch the value of an environment variable.
Return O on success, -1 on failure
Parameters
e name: Name of environment varaible.

* name: Value of the environemnt variable if it exists, empty otherwise.

int setenv (const std::string &env, const std::string &val)
Set the value of an environment variable.
Return O on success, -1 on failure
Parameters
e env: Name of environment variable.

e val: Value of environment variable.

int unsetenv (const std::string &env)
Clear the value of an environment variable.
Return O on success, -1 on failure
Parameters

e env: Name of the environment variable to clear.

void eatwhitespace (std::istream &s)
Skip stream input until a non-space character is found.

Parameters

* s: Stream to process.

512 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

void trimLeading (std::string &s)
Remove whitspace from the beginning of a string.
Parameters
* s: String to be trimmed.
void trimTrailing (std::string &s)
Remove whitspace from the end of a string.
Parameters
* s: String to be trimmed.
void trim (std::string &s)
Remove whitespace from the beginning and end of a string.

Parameters

* s: String to be trimmed.

bool eatcharacter (std::istream &s, char x)
If specified character is at the current stream position, advance the stream position
by 1.
Return true if the character is at the current stream position, false otherwise.
Parameters

e s: Stream to insect.

¢ x: Character to check for.

std::string base64_encode (const unsigned char *buf, size_t size)
Convert a buffer to a string using base64 encoding.

Return Encoded buffer.

Parameters
* buf: Pointer to buffer to encode.
* size: Size of buffer.

std::string base64_encode (std::vector<uint8_t> const &bytes)
Convert a buffer to a string using base64 encoding.

Return Encoded buffer.

14.3. API 513

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Parameters

* bytes: Pointer to buffer to encode.

std::vector<uint8_t>base64_decode (std::string const &input)
Decode a base64-encoded string into a buffer.
Return Buffer containing decoded string.
Parameters

* input: String to decode.

FILE *portable_popen (const std::string &command, const std::string

&mode)
Start a process to run a command and open a pipe to which input can be written and

from which output can be read.
Return Pointer to FILE for input/output from the subprocess.
Parameters

* command: Command to run in subprocess. Either ‘r’, ‘w’ or ‘r+’ to
specify if the pipe should be opened as read-only, write-only or read-write.

int portable_pclose (FILE *fp)
Close file opened with portable_popen (page 514).
Return O on success, -1 on failure.
Parameters

* fp: Pointer to file to close.

int run_shell_command (const std::string &cmd, std::string &output)
Create a subprocess and set the standard output of the command into the provided
output string.
Parameters

¢ cmd: Command to run.

e output: String to which output from the command should be written,

std::string replaceAll (std::string input, const std::string &replaceWhat,

const std::string &replaceWithWhat)
Replace all instances of one string found in the input with another value.

Return Modified version of input string.

514 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Parameters
* input: Input string to modify.
* replaceWhat: Token to locate in input string.

* replaceWithWhat: Replacement for found tokens.

StringList wordWrap (std::string const &inputString, size_t lineLength, size_t

firstLength = 0)
Break a string into a list of strings to not exceed a specified length.

Whitespace is condensed to a single space and each string is free of whitespace at
the beginning and end when possible. Optionally, a line length for the first line can
be different from subsequent lines.
Return List of substrings generated from the input string.
Parameters

* inputString: String to split into substrings.

* lineLength: Maximum length of substrings.

* firstLength: When non-zero, the maximum length of the first
substring. When zero, the first firstLength is assigned the value provided in
lineLength.

StringList wordWrap2 (std::string const &inputString, size_t lineLength, size_t

firstLength = 0)
Break a string into a list of strings to not exceed a specified length.

The concatanation of the returned substrings will yield the original string. The
algorithm attempts to break the original string such that each substring begins with
a word.
Return List of substrings generated from the input string.
Parameters

* inputString: String to split into substrings.

* lineLength: Maximum length of substrings.

* firstLength: When non-zero, the maximum length of the first
substring. When zero, the first firstLength is assigned the value provided in
lineLength.

std::string escapeJSON (const std::string &s)
Add escape characters or otherwise transform an input string so as to be a valid
JSON string.

14.3. API 515

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Return Valid JSON version of input string.
Parameters
* s: Input string.
std::string demangle (const std::string &s)
Demangle a C++ symbol into readable form.

Demangle strings using the compiler-provided demangle function.

Return Demangled symbol.
Return Demangled string
Parameters

* s: String to demangle.
Parameters

* s: String to be demangled.

int screenWidth ()
Return the screen width of an associated tty.

Return The tty screen width or 80 if on Windows or it can’t be determined.
std::string escapeNonprinting (const std::string &s)

Escape non-printing characters by using standard notation (i.e.

) or hex notation () as as necessary.

Return Copy of input string with non-printing characters converted to printable

notation.
Parameters
* s: String to modify.

double normalizeLongitude (double longitude)

Normalize longitude so that it’s between (-180, 180].

Return Normalized longitude.

Parameters

* longitude: Longitude to normalize.

516 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

std::string hexDump (const char *buf, size_t count)
Convert an input buffer to a hexadecimal string representation similar to the output
of the UNIX command ‘od’.

This is mostly used as an occasional debugging aid.

Return Buffer converted to hex string.
Parameters
* buf: Point to buffer to dump.
* count: Size of buffer.
template <typename PREDICATE>
PDAL_DLL std::string::size_type pdal::Utils::extract (const std::strinc
Count the number of characters in a string that meet a predicate.
Return Then number of characters matching the predicate.
Parameters
* s: String in which to start counting characters.
* p: Position in input string at which to start counting.
* pred: Unary predicate that tests a character.
PDAL_DLL std::string::size_type pdal::Utils: :extractSpaces (const std:
Count the number of characters spaces in a string at a position.
Return Then number of space-y characters matching the predicate.
Parameters
* s: String in which to start counting characters.
* p: Position in input string at which to start counting.

template <typename PREDICATE>
PDAL_DLL std::vector<std::string> pdal::Utils::split (const std::strinc
Split a string into substrings based on a predicate.

Characters matching the predicate are discarded.

Return Substrings.
Parameters
* s: String to split.

* p: Unary predicate that returns true to indicate that a character is a split
location.

14.3. API 517

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

template <typename PREDICATE>
PDAL_DLL std::vector<std::string> pdal::Utils::split2(const std::string
Split a string into substrings.

Characters matching the predicate are discarded, as are empty strings otherwise
produced by split() (page 517).
Return Vector of substrings.
Parameters
* s: String to split.
 p: Predicate returns true if a char in a string is a split location.

PDAL_DLL std::vector<std::string> pdal::Utils::split (const std::string
Split a string into substrings based a splitting character.

The splitting characters are discarded.

Return Substrings.
Parameters
* s: String to split.
* p: Character indicating split positions.

PDAL_DLL std::vector<std::string> pdal::Utils::split2(const std::string
Split a string into substrings based a splitting character.

The splitting characters are discarded as are empty strings otherwise produced by
split() (page 517).
Return Substrings.
Parameters
* s: String to split.
* p: Character indicating split positions.
std::vector<std::string> simpleWordexp (const std::string &s)
Perform shell-style word expansion (break a string into arguments).

This only does simple handling of quoted values and backslashes and doesn’t
support fancier shell behavior. Use the real wordexp() if you need all that. The
behavior of escaped values in a string was surprising to me, so try the shell first if
you think you’ve found a problem.

Return List of arguments.

518 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Parameters

* s: Input string to parse.

template <typename T>
std::string typeidName ()
Return a string representation of a type specified by the template argument.

Return String representation of the type.

RedirectStream (page 525) redirect (std::ostream &out, std::ostream &dst)
Redirect a stream to some other stream, by default a null stream.
Return Context for stream restoration (see restore() (page 519)).
Parameters
e out: Stream to redirect.

e dst: Destination stream.

RedirectStream (page 525) redirect (std::ostream &out)
Redirect a stream to a null stream.
Return Context for stream restoration (see restore() (page 519)).
Parameters

e out: Stream to redirect.

RedirectStream (page 525) redirect (std::ostream &out, const std::string

&file)
Redirect a stream to some file.

Return Context for stream restoration (see restore() (page 519)).
Parameters
* out: Stream to redirect.

e file: Name of file where stream should be redirected.

void restore (std::ostream &out, RedirectStream (page 525) &redir)
Restore a stream redirected with redirect() (page 519).

Parameters

e out: Stream to be restored.

14.3. API 519

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

e redir: RedirectStream (page 525) returned from corresponding
redirect() (page 519) call.

template <typename T_OUT>
bool inRange (double in)

Determine whether a double value may be safely converted to the given output type

without over/underflow.

If the output type is integral the input will be rounded before being tested.

Return Whether value can be safely converted to template type.
Parameters

e in: Value to range test.

template <typename T_IN, typename T_OUT>

bool inRange (T_IN in)
Determine whether a value may be safely converted to the given output type
without over/underflow.

If the output type is integral and different from the input time, the value will be
rounded before being tested.

Return Whether value can be safely converted to template type.

Parameters

* in: Value to range test.

template <typename T_IN, typename T_OUT>
bool numericCast (T _IN in, T OUT &out)
Convert a numeric value from one type to another.

Floating point values are rounded to the nearest integer before a conversion is

attempted.

Return true if the conversion was successful, false if the datatypes/input
value don’t allow conversion.

Parameters

e in: Value to convert.

e out: Converted value.

template <>
bool numericCast (double in, float &out)
Convert a numeric value from double to float.

Specialization to handle NaN.

520 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Return true if the conversion was successful, false if the datatypes/input
value don’t allow conversion.

Parameters
e in: Value to convert.

e out: Converted value.

template <typename T>

std::string toString (const T &from)
Convert a value to its string representation by writing to a stringstream.
Return String representation.

Parameters

e from: Value to convert.

std::string toString (bool from)
Convert a bool to a string.

std::string toString (double from, size_t precision = 10)
Convert a double to string with a precision of 10 decimal places.
Return String representation of numeric value.
Parameters

e from: Value to convert.

std::string toString (float from)
Convert a float to string with a precision of 10 decimal places.
Return String representation of numeric value.
Parameters

e from: Value to convert.

std::string toString (long long from)
Convert a long long int to string.
Return String representation of numeric value.
Parameters

e from: Value to convert.

14.3. API 521

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

std::string toString (unsigned long from)
Convert an unsigned long long int to string.
Return String representation of numeric value.
Parameters

e from: Value to convert.

std::string toString (long from)
Convert a long int to string.
Return String representation of numeric value.
Parameters

e from: Value to convert.
std::string toString (unsigned int from)
Convert an unsigned int to string.
Return String representation of numeric value.
Parameters
e from: Value to convert.
std::string toString (int from)
Convert an int to string.
Return String representation of numeric value.

Parameters

e from: Value to convert.

std::string toString (unsigned short from)
Convert an unsigned short to string.

Return String representation of numeric value.
Parameters

e from: Value to convert.

std::string toString (short from)
Convert a short int to string.

Return String representation of numeric value.

522 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Parameters

e from: Value to convert.

std::string toString (char from)
Convert a char (treated as numeric) to string.
Return String representation of numeric value.
Parameters

e from: Value to convert.

std::string toString (unsigned char from)
Convert an unsigned char (treated as numeric) to string.
Return String representation of numeric value.
Parameters

e from: Value to convert.

std::string toString (signed char from)
Convert a signed char (treated as numeric) to string.
Return String representation of numeric value.
Parameters

e from: Value to convert.

template <typename T>
bool £fromString (const std::string &from, T *&to)

template <typename T>

bool £fromString (const std::string &from, T &to)
Convert a string to a value by reading from a string stream.
Return true if the conversion was successful, false otherwise.
Parameters

e from: String to convert.

e to: Converted value.

template <>
bool fromString (const std::string &from, std::string &to)

template <>
template<>

14.3. API 523

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

bool £fromString<char> (const std::string &s, char &t0)
Convert a numeric string to a char numeric value.

s String to convert.
Return true if the conversion was successful, false otherwise.
Parameters

¢ to: Converted numeric value.

template <>

template<>

bool fromString<unsigned char> (const std::string &s, unsigned char &to)
Convert a numeric string to an unsigned char numeric value.

s String to convert.
Return true if the conversion was successful, false otherwise.
Parameters

e to: Converted numeric value.

template <>

template<>

bool fromString<signed char> (const std::string &s, signed char &to)
Convert a numeric string to a signed char numeric value.

s String to convert.
Return true if the conversion was successful, false otherwise.
Parameters

* to: Converted numeric value.
template <>
template<>
bool £romString<double> (const std::string &s, double &d)
Specialization conversion from string to double to handle Nan.
Return t rue if the conversion was successful, false otherwise.
Parameters

* s: String to be converted.

¢ d: Converted value.

template <typename E>
std::underlying_type<E>::itype toNative (E ¢)
Return the argument cast to its underlying type.

Typically used on an enum.

524 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Return Converted variable.
Parameters

* e: Variable for which to find the underlying type.

template <>
template<>
bool fromSt ring<EptBounds> (const std::string &s, EptBounds &bounds)

Variables

"

const char dynamicLibExtension[] =".so
const char dirSeparator ="/

const char pathListSeparator ="

struct BacktraceEntry
#include <Backtracelmpl.hpp>

Public Functions

BacktraceEntry ()

Public Members

std::string 1ibname
void *addr
std::string symname
int offset

struct RedirectStream
#include <Utils.hpp>

Public Functions

RedirectStream ()

14.3. API 525

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

Public Members

std::ofstream *m_out
std::streambuf *m_buf

std::unique_ptr<NullOStream>m_null

pdal: :Writer
class pdal::Writer
A Writer (page 526) is a terminal stage for a PDAL pipeline.

It usually writes output to a file, but this isn’t a requirement. The class provides support
for some operations common for producing point output.

Inherits from pdal::Stage (page 500)

Subclassed by pdal::DbWriter, pdal::E57Writer, pdal::EptAddonWriter, pdal::FbxWriter,
pdal::FlexWriter, pdal::GeoWaveWriter, pdal::GltfWriter, pdal::MatlabWriter,
pdal::NullWriter, pdal::PcdWriter, pdal::PlyWriter, pdal::SbetWriter, pdal:: TextWriter,
pdal:: TileDBWriter

14.3.2 libLAS C API to PDAL transition guide

Author Vaclav Petras
Contact wenzeslaus@gmail.com
Date 09/04/2015

This page shows how to port code using libLAS C API to PDAL API (which is C++). The new
code is not using full power of PDAL but it uses just what is necessary to read content of a
LAS file.

Includes

libL AS include:

#include <liblas/capi/liblas.h>

For PDAL, in addition to PDAL headers, we also include standard headers which will be useful
later:

526 Chapter 14. Development

mailto:wenzeslaus@gmail.com

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

#include <memory>

#include <pdal/PointTable.hpp>
#include <pdal/PointView.hpp>

#include <pdal/LasReader.hpp>

#include <pdal/LasHeader.hpp>

#include <pdal/Options.hpp>

Initial steps

Opening the dataset in libLAS:

LASReaderH LAS_reader;

LASHeaderH LAS_header;

LASSRSH LAS_srs;

LAS_reader = LASReader_Create (in_opt->answer) ;
LAS_header = LASReader_GetHeader (LAS_reader) ;

The higher level of abstraction in PDAL requires a little bit more code for the initial steps:

pdal::Option las_opt("filename", in_opt->answer);
pdal::Options las_opts;

las_opts.add(las_opt) ;

pdal::PointTable table;

pdal: :LasReader las_reader;

las_reader.setOptions (las_opts);
las_reader.prepare (table) ;

pdal: :PointViewSet point_view_set = las_reader.execute (table);
pdal::PointViewPtr point_view = xpoint_view_set.begin();
pdal::Dimension: :IdList dims = point_view->dims () ;

pdal: :LasHeader las_header = las_reader.header();

The PDAL code is also different in the way that we read all the data right away while in
libLAS we just open the file. To make use of other readers supported by PDAL, see
StageFactory class.

The test if the file was loaded successfully, the test of the header pointer was used with libLAS:

if (LAS_ _header == NULL) {
/* fail x/

In general, PDAL will throw a pdal_error exception in case something is wrong and it

can’t recover such in the case when the file can’t be opened. To handle the exceptional state by

yourself, you can wrap the code in t ry—catch block:

14.3. API

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

try {
/% actual code x*/
} catch {

/% fail in your own way */

Dataset properties

We assume we defined all the following variables as double.

The general properties from the LAS file are retrieved from the header in libLAS:

scale_x = LASHeader_ GetScaleX (LAS_header) ;
scale_y LASHeader_GetScaleY (LAS_header) ;
scale_z LASHeader_GetScaleZ (LAS_header) ;

offset_x = LASHeader_GetOffsetX (LAS_header);
offset_y LASHeader_GetOffsetY (LAS_header);
offset =z LASHeader_ GetOffsetZ (LAS_header);

xmin = LASHeader_GetMinX (LAS_header) ;
xmax = LASHeader_GetMaxX (LAS_header) ;
ymin = LASHeader_ GetMinY (LAS_header)

()

ymax = LASHeader_GetMaxY (LAS_header

.

.

4

r

And the same applies PDAL:

scale_x = las_header.scaleX();
scale_y = las_header.scaleY () ;
scale_z = las_header.scaleZ();

offset_x = las_header.offsetX();
offset_y = las_header.offsetY();
offset_z = las_header.offsetz();

xmin = las_header.minX () ;
xmax = las_header.maxX () ;
ymin = las_header.minY () ;
ymax = las_header.maxY¥Y () ;

The point record count in libLAS:

unsigned int n_features = LASHeader_GetPointRecordsCount (LAS_header) ;

is just point count in PDAL:

528 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

unsigned int n_features = las_header.pointCount () ;

WKT of a spatial reference system is obtained from the header in libLAS:

LAS_srs = LASHeader_ GetSRS (LAS_header);
charx projstr = LASSRS_GetWKT_CompoundOK (LAS_srs) ;

In PDAL, spatial reference is part of the PointTable:

charx projstr = table.spatialRef ().
—getWKT (pdal: : SpatialReference: :eCompoundOK) .c_str () ;

Whether the time or color is supported by the LAS format, one would have to determine from
the format ID in 1ibLAS:

las_point_format = LASHeader_GetDataFormatId (LAS_header);
have_time = (las_point_format == 1

In PDAL, there is a convenient function for it in the header:

have_time = las_header.hasTime () ;
have_color = las_header.hasColor () ;

The presence of color, time and other dimensions can be also determined with:

pdal::Dimension: :IdList dims = point_view->dims () ;

Iterating over points

libLAS:

while ((LAS_point = LASReader_GetNextPoint (LAS_reader)) != NULL) {
//

}

PDAL.:

for (pdal::PointlId idx = 0; idx < point_view->size(); ++idx) {
//

}

Point validity

The correct usage of libLAS required to test point validity:

14.3. API 529

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

LASPoint_TIsValid (LAS_point)

In PDAL, there is no need to do that and the caller can assume that all the points provided by
PDAL are valid.

Coordinates

libLAS:

b
|

= LASPoint_GetX (LAS_point);
y = LASPoint_GetY (LAS_point);
z = LASPoint_GetZ (LAS_point);

In PDAL, point coordinates are one of the dimensions:

using namespace pdal::Dimension;

x = point_view->getFieldAs<double> (Id::X, idx);
y = point_view->getFieldAs<double> (Id::Y, idx);
z = point_view->getFieldAs<double> (Id::Z, idx);

Thanks to using namespace pdal::Dimension we can just write Id: : X etc.

Returns

libLAS:

int return_no = LASPoint_GetReturnNumber (LAS_point);
int n_returns = LASPoint_GetNumberOfReturns (LAS_point);

PDAL.:

int return_no = point_view->getFieldAs<int> (Id::ReturnNumber, idx);
int n_returns = point_view->getFieldAs<int> (Id::NumberOfReturns,
—idx);

Classes

libLAS:

int point_class = (int) LASPoint_GetClassification (LAS_point);

PDAL.:

530 Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

int point_class = point_view->getFieldAs<int> (Id::Classification,
—1idx) ;

Color

libLAS:

LASColorH LAS_color = LASPoint_GetColor (LAS_point);
int red = LASColor_GetRed(LAS_color);

int green = LASColor_GetGreen (LAS_color);

int blue = LASColor_GetBlue (LAS_color);

PDAL.:

int red = point_view->getFieldAs<int> (Id::Red, idx);
int green = point_view->getFieldAs<int> (Id::Green, idx);
int blue = point_view->getFieldAs<int> (Id::Blue, idx);

For LAS format, hasColor () method of LasHeader to see if the format supports RGB.
However, in general, you can test use hasDim (Id: :Red), hasDim(Id: :Green) and
hasDim (Id: :Blue) method calls on the point, to see if the color was defined.

Time
libLAS:

double time = LASPoint_GetTime (LAS_point);

PDAL.:

double time = point_view->getFieldAs<double> (Id::GpsTime, idx);

Other point attributes

libLAS:

LASPoint_GetIntensity (LAS_point)
LASPoint_GetScanDirection (LAS_point)
LASPoint_GetFlightLineEdge (LAS_point)
LASPoint_GetScanAngleRank (LAS_point)
LASPoint_GetPointSourceId (LAS_point)
LASPoint_GetUserData (LAS_point)

14.3. API 531

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

PDAL.:

point_view->getFieldAs<int> (Id::Intensity, idx)
point_view—>getFieldAs<int> (Id::ScanDirectionFlag, idx)
point_view->getFieldAs<int> (Id: :EdgeOfFlightLine, idx)
point_view->getFieldAs<int> (Id::ScanAngleRank, idx)
point_view->getFieldAs<int> (Id::PointSourceld, idx)

(Id

point_view->getFieldAs<int> ::UserData, 1idx)

Memory management

In libLAS C API, we need to explicitly take care of freeing the memory:

LASSRS_Destroy (LAS_srs) ;
LASHeader_Destroy (LAS_header) ;
LASReader_Destroy (LAS_reader) ;

When using C++ and PDAL, the objects created on stack free the memory when they go out of
scope. When using smart pointers, they will take care of the memory they manage. This does
not apply to special cases such as exit () function calls.

14.4 FAQ

* How do you pronounce PDAL?

The proper spelling of the project name is PDAL, in uppercase. It is pronounced to
rhyme with “GDAL”.

Why do I get the error “Couldn’t create ... stage of type ...”?

In almost all cases this error occurs because you’re trying to run a stage that is built as a
plugin and the plugin (a shared library file or DLL) can’t be found by pdal. You can
verify whether the plugin can be found by running pdal --drivers

If you’ve built pdal yourself, make sure you’ve requested to build the plugin in question
(set BUILD_PLUGIN_TILEDB=O0ON, for example, in CMakeCache.txt).

If you’ve successfully built the plugin, a shared object called

libpdal_plugin_<plugin type>_<plugin name>.<shared library,
—extension>

should have been created that’s installed in a location where pdal can find it. pdal will
search the following paths for plugins: ., ./1ib, ../1ib, ./bin, ../bin.

532

Chapter 14. Development

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

You can also override the default search path by setting the environment variable
PDAL_DRIVER_PATH to a list of directories that pdal should search for plugins.

(13

* Why do I get the error ‘“Unable to convert scaled value . ..
This error usually occurs when writing LAS files, but can occur with other formats.

Simply, the output format you’ve chosen doesn’t support values as large (or small) as
those that you’re trying to write. For example. if the output format specifies 32-bit
signed integers, attempting to write a value larger than 2,147,483,647 will cause this
error, as 2,147,483,647 is the largest 32-bit signed integer.

The LAS format always stores X, Y and Z values as 32-bit integers. You can specify a
scale factor to be applied to those values in order to change their magnitude, but their
precision is limited to 32 bits. If the value you’re attempting to write, when divided by
the scale factor you’ve specified, is larger than 2,147,483,647, you will get this error. For
example, if you attempt to write the value 6 with a scale factor of .000000001, you’ll get
this error, as 6 /.000000001 is 6,000,000,000, which is larger than the maximum integer
value.

* Why am I using 100GB of memory when trying to process a 10GB LAZ file?

If you’re performing an operation that is using standard mode (page 47), PDAL will read
all points into memory at once. Compressed files, like LAZ, can decompress to much
larger sizes before PDAL can process the data. Furthermore, some operations (notably
DEM creation (page 112)) can use large amounts of additional memory during
processing before the output can be written. Depending on the operation, PDAL will
attempt operate in stream mode (page 47) to limit memory consumption when possible.

* What is PDAL’s relationship to PCL?

PDAL is PCL’s data translation cousin. PDAL is focused on providing a declarative
pipeline syntax for orchestrating translation operations. PDAL also supports reading and
writing PCL PCD files using readers.pcd (page 83) and writers.pcd (page 130).

See also:

PCL (page 7) describes PDAL and PCL’s relationship.

e What is PDAL’s relationship to libLAS?

The idea behind 1ibLAS was limited to LIDAR data and basic manipulation. libLAS was
also trying to be partially compatible with LASIib and LAStools. PDAL, on the other
hand, aims to be a ultimate library and a set of tools for manipulating and processing
point clouds and is easily extensible by its users. Howard Butler talked more about this

14.4. FAQ 533

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

history in a GeoHipster interview (http://geohipster.com/2018/03/05/howard-butler-like-
good-song-open-source-software-chance-immortal/) in
2018.

Are there any command line tools in PDAL similar to LAStools?

Yes. The pdal (page 25) command provides a wide range of features which go far
beyond basic LIDAR data processing. Additionally, PDAL is licensed under an open
source license (this applies to the whole library and all command line tools).

See also:

Applications (page 25) describes application operations you can achieve with PDAL.

Is there any compatibility with libLAS’s LAS Utility Applications or LAStools?

No. The the command line interface was developed from scratch with focus on usability
and readability. You will find that the pdal command has several well-organized
subcommands such as info or translate (see Applications (page 25)).

I get GeoTIFF errors. What can I do about them?

(readers.las Error) Geotiff directory contains key 0 with short
—entry
and more than one value.

If readers.las (page 69) is emitting error messages about GeoTIFF, this means the keys
that were written into your file were incorrect or at least not readable by libgeotiff
(https://trac.osgeo.org/geotif). Rewrite the file using PDAL to fix the issue:

pdal translate badfile.las goodfile.las —-writers.las.forward=all

14.5 License

Unless otherwise indicated, all files in the PDAL distribution are

Copyright (c) 2019, Hobu, Inc. (howard @hobu.co)

and are released under the terms of the BSD open source license.

This file contains the license terms of all files within PDAL.

534

Chapter 14. Development

http://geohipster.com/2018/03/05/howard-butler-like-good-song-open-source-software-chance-immortal/
https://trac.osgeo.org/geotif
mailto:howard@hobu.co

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

14.5.1 Overall PDAL license (BSD)

Copyright (c) 2019, Hobu, Inc. (howard @hobu.co)
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of Hobu, Inc. or Flaxen Consulting LLC nor the names of
its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

14.6 References

14.6.1 Citation

To cite PDAL in publications use:

PDAL Contributors, 2018. PDAL Point Data Abstraction Library.
doi:10.5281/zenodo.2556738

A BibTeX entry for LaTeX users is

14.6. References

535

mailto:howard@hobu.co

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

@misc{pdal_contributors_2018_2556738, author = {PDAL Contributors}, title
= {PDAL Point Data Abstraction Library}, month = nov, year = 2018, doi =
{10.5281/zenodo.2556738}, url = {https://doi.org/10.5281/zenodo.2556738 }

14.6.2 Reference

536 Chapter 14. Development

https://doi.org/10.5281/zenodo.2556738

CHAPTER
FIFTEEN

INDICES AND TABLES

e genindex

e search

537

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

538 Chapter 15. Indices and tables

BIBLIOGRAPHY

[MS10] Andriy Myronenko and Xubo Song. Point set registration: coherent point drift. IEEE
transactions on pattern analysis and machine intelligence, 32(12):2262-75, dec 2010.

[YGS88] Alan L. Yuille and Norberto M. Grzywacz. The Motion Coherence Theory. Second
International Conference on Computer Vision, 1988.

[Gle07] Craig L. Glennie. Rigorous 3D error analysis of kinematic scanning LIDAR systems.
Journal of Applied Geodesy, jan 2007.

[Alexa2003] Alexa, Marc, et al. “Computing and rendering point set surfaces.” Visualization
and Computer Graphics, IEEE Transactions on 9.1 (2003): 3-15.

[Bartels2010] Bartels, Marc, and Hong Wei. “Threshold-free object and ground point
separation in LIDAR data.” Pattern recognition letters 31.10 (2010): 1089-1099.

[Breunig2000] Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J., 2000. LOF: Identifying
Density-Based Local Outliers. Proc. 2000 Acm Sigmod Int. Conf. Manag. Data 1-12.

[Chen2012] Chen, Ziyue et al. “Upward-Fusion Urban DTM Generating Method Using
Airborne Lidar Data.” ISPRS Journal of Photogrammetry and Remote Sensing 72 (2012):
121-130.

[Cook1986] Cook, Robert L. “Stochastic sampling in computer graphics.” ACM Transactions
on Graphics (TOG) 5.1 (1986): 51-72.

[Demantke2011] Demantké J., Mallet C., David N., Vallet, B. “Dimensionality Based Scale
Selection in 3d LIDAR Point Clouds.” Int. Arch. Photogramm. Remote Sens. Spatial Inf.
Sci, XXXVIII-5/W12, 97-102, 2011

[Dippe1985] Dippé, Mark AZ, and Erling Henry Wold. “Antialiasing through stochastic
sampling.” ACM Siggraph Computer Graphics 19.3 (1985): 69-78.

[Ester1996] Ester, Martin, et al. “A density-based algorithm for discovering clusters in large
spatial databases with noise.” Kdd. Vol. 96. No. 34. 1996.

[Fischer2010] Fischer, Kaspar, Bernd Giértner, and Martin Kutz. “Fast
Smallest-Enclosing-Ball Computation in High Dimensions.” 26473 (2010): 630-641. Web.

539

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

[Guinard2017] Guinard S., Landrieu L. “Weakly Supervised Segmented-Aided Classification
of Urban Scenes From 3D LIDAR Point Clouds.” Int. Arch. Photogramm. Remote Sens.
Spatial Inf. Sci., XLII-1/W1, 151-157, 2017

[Kazhdan2006] Kazhdan, Michael, Matthew Bolitho, and Hugues Hoppe. “Poisson surface
reconstruction.” Proceedings of the fourth Eurographics symposium on Geometry
processing. Vol. 7. 2006.

[Li2010] Li, Ruosi, et al. “Polygonizing extremal surfaces with manifold guarantees.”
Proceedings of the 14th ACM Symposium on Solid and Physical Modeling. ACM, 2010.

[Limberger2015] Limberger, Frederico A., and Manuel M. Oliveira. “Real-Time Detection of
Planar Regions in Unorganized Point Clouds.” Pattern Recognition 48.6 (2015):
2043-2053. Web.

[Mesh2009] ALoopinglcon. “Meshing Point Clouds.” MESHLAB STUFF. n.p., 7 Sept. 2009.
Web. 13 Nov. 2015.

[Pingel2013] Pingel, Thomas J., Keith C. Clarke, and William A. McBride. “An Improved
Simple Morphological Filter for the Terrain Classification of Airborne LIDAR Data.”
ISPRS Journal of Photogrammetry and Remote Sensing 77 (2013): 21-30.

[Rusu2008] Rusu, Radu Bogdan, et al. “Towards 3D point cloud based object maps for
household environments.” Robotics and Autonomous Systems 56.11 (2008): 927-941.

[Weyrich2004] Weyrich, T et al. “Post-Processing of Scanned 3D Surface Data.” Proceedings
of Eurographics Symposium on Point-Based Graphics 2004 (2004): 85-94. Print.

[Zhang2003] Zhang, Keqi, et al. “A progressive morphological filter for removing nonground
measurements from airborne LIDAR data.” Geoscience and Remote Sensing, IEEE
Transactions on 41.4 (2003): 872-882.

[Zhang2016] Zhang, Wuming, et al. “An easy-to-use airborne LiDAR data filtering method
based on cloth simulation.” Remote Sensing 8.6 (2016): 501.

540 Bibliography

A

Apps, 10

B

Bindings, 261
boundary, 321

C

capstone, 385

Citation, 535
classification, 349, 363, 365
classifications, 336
Clipping, 324
CloudCompare, 8
Colorization, 330
Command line, 10
Compile, 265

Conda, 17, 259, 308
coordinate system, 310
csd, 379

CSYV, 310

D

Denoising, 335
Density, 338
density, 343
DSM, 355
DTM, 355

E

elevation model, 355
Embed, 257
Entwine, 7

EPT, 319

Extension, 258

INDEX

F

filtering, 349, 363
Fusion, 8

G

GDAL, 330
georeferencing, 304, 379
GeoWave, 62, 115
GNSS/IMU, 304, 379
Greyhound, 7

ground, 349, 363

H

hexagon tessellation, 338
histogram, 379

info command, 309
Install, 258, 259, 264
installation, 309
intensity, 365

J

Java, 261, 264, 265
JNI, 261

JSON, 310

Julia, 11

L

LAStools, 7
libLAS, 8

M

matplotlib, 379
metadata, 310

541

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

N

nearby, 313
nearest, 313

Numpy, 11, 257, 379

O

OGR, 321, 324, 338

Optech, 379

OrfeoToolbox, 8

outliers, 335

P

PCL, 7
pdal::BOX2D

pdal::BOX2D:
pdal::BOX2D:
pdal::BOX2D:
pdal::BOX2D:

467

pdal::BOX2D:
pdal::BOX2D:
pdal::BOX2D:
pdal::BOX2D:

469

(C++ class), 465

:BOX2D (C++ function), 465
:.clear (C++ function), 466
:clip (C++ function), 467
:contains (C++ function), 466,

:empty (C++ function), 465
:equal (C++ function), 466
:error (C++ class), 469
:error::error (C++ function),

pdal::BOX3D:
pdal::BOX3D:
471
pdal::BOX3D:
pdal::BOX3D:
pdal::BOX3D:
pdal::BOX3D:
473
pdal::BOX3D::getDefaultSpatialExtent (C++
function), 473
pdal::BOX3D::grow (C++ function), 470, 472
pdal::BOX3D::maxz (C++ member), 473
pdal::BOX3D::minz (C++ member), 473
pdal::BOX3D::operator
= (C++ function), 471
pdal::BOX3D::operator= (C++ function), 469
pdal::BOX3D::operator== (C++ function),
471

:clip (C++ function), 472
:contains (C++ function), 470,

:empty (C++ function), 470
:equal (C++ function), 471
:error (C++ class), 473
:error::error (C++ function),

pdal::BOX3D:
pdal::BOX3D:
pdal::BOX3D:
pdal::BOX3D:
pdal::BOX3D:
pdal::BOX3D:

:overlaps (C++ function), 472
:parse (C++ function), 473
:to2d (C++ function), 472
:toBox (C++ function), 472
:toWKT (C++ function), 473
:valid (C++ function), 470

pdal::BOX2D::getDefaultSpatialExtent (C++
function), 469
pdal::BOX2D::grow (C++ function), 466, 467

pdal::Charbuf (C++ class), 474
pdal::Charbuf::Charbuf (C++ function), 474
pdal::Charbuf::initialize (C++ function), 474

pdal::BOX2D
pdal::BOX2D
pdal::BOX2D
pdal::BOX2D
pdal::BOX2D

::maxx (C++ member), 469
::maxy (C++ member), 469
::minx (C++ member), 469
::miny (C++ member), 469
::operator

= (C++ function), 467

pdal::BOX2D
467
pdal::BOX2D
pdal::BOX2D
pdal::BOX2D
pdal::BOX2D
468
pdal::BOX2D
pdal::BOX2D

::operator== (C++ function),

::overlaps (C++ function), 467
::parse (C++ function), 468
::toBox (C++ function), 468
::toGeoJSON (C++ function),

::toWKT (C++ function), 468
::valid (C++ function), 466

pdal::Dimension (C++ type), 474
pdal::Dimension::base (C++ function), 475
pdal::Dimension::BaseType (C++ type), 475
pdal::Dimension::COUNT (C++ member),

476

pdal::Dimension::DetailList (C++ type), 475
pdal::Dimension::Double (C++ enumerator),

475

pdal::Dimension::extractName (C++
function), 476
pdal::Dimension::Float (C++ enumerator),

475

pdal::BOX3D (C++ class), 469
pdal::BOX3D::BOX3D (C++ function), 469
pdal::BOX3D::clear (C++ function), 470

pdal::Dimension::Floating (C++ enumerator),
475

pdal::Dimension::fromName (C++ function),
475

pdal::Dimension::interpretationName (C++
function), 475

542

Index

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:

pdal:
pdal:

pdal:
pdal:
pdal:

pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:

pdal:
pdal:

:Dimension::
:Dimension:

:Dimension:
:Dimension:
:Dimension:

:Dimension::None (C++ enumerator),

475

:Dimension::operator>> (C++ function),

476

:Dimension::operator<< (C++ function),

476

:Dimension::PROPRIETARY (C++

member), 476

:Dimension::Signed (C++ enumerator),

475

:Dimension::Signed16 (C++

enumerator), 475

:Dimension::Signed32 (C++

enumerator), 475

:Dimension::Signed64 (C++

enumerator), 475

:Dimension::Signed8 (C++ enumerator),

475

size (C++ function), 475
:toName (C++ function),
475

:type (C++ function), 476
‘Type (C++ type), 475
:Unsigned (C++
enumerator), 475

:Dimension::Unsigned16 (C++

enumerator), 475

:Dimension::Unsigned32 (C++

enumerator), 475

:Dimension::Unsigned64 (C++

enumerator), 475

:Dimension::Unsigned8 (C++

enumerator), 475

:Extractor (C++ class), 477
:Extractor::Extractor (C++ function), 477
:Extractor::get (C++ function), 478
:Extractor::good (C++ function), 477
:Extractor::operator bool (C++ function),

477

:Extractor::operator>> (C++ function),

478, 479

:Extractor::position (C++ function), 477
:Extractor::seek (C++ function), 477
:Extractor::skip (C++ function), 477
:FileUtils (C++ type), 479

pdal:
pdal:
pdal:
pdal:
pdal:
pdal:

pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:

pdal:
pdal::
pdal::
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:

pdal:

pdal::

:Filter (C++ class), 483

:Filter::Filter (C++ function), 484
IStream (C++ class), 484
:IStream::~IStream (C++ function), 485
:IStream::IStream (C++ function), 484
:IStream::operator bool (C++ function),

485

:Log (C++ class), 487
:Log::
:Log:
:Log:
:Log:
:Log:
:Log:
:Log:
:Log:
:Log:
:Log:
:Log:
:Log::
:Log::
:Metadata (C++ class), 489
:Metadata::getNode (C++ function), 489
:Metadata::inferType (C++ function),

~Log (C++ function), 487
:clearFloat (C++ function), 488
:floatPrecision (C++ function), 488
:get (C++ function), 488

:getLevel (C++ function), 487
:getLevelString (C++ function), 488
:getLogStream (C++ function), 488
:leader (C++ function), 488
:makel.og (C++ function), 488, 489
:popLeader (C++ function), 488
:pushLeader (C++ function), 488
setLeader (C++ function), 487
setLevel (C++ function), 487

489

:Metadata::Metadata (C++ function), 489

MetadataNode (C++ class), 489
MetadataNode::add (C++ function),
489, 490

:MetadataNode::addEncoded (C++

function), 489

:MetadataNode::addList (C++ function),

489, 490

:MetadataNode::addListEncoded (C++

function), 489

:MetadataNode::addOrUpdate (C++

function), 490

:MetadataNode::addWithType (C++

function), 490

:MetadataNode::childNames (C++

function), 490

:MetadataNode::children (C++ function),

490
MetadataNode::clone (C++ function),
489

Index

543

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

pdal:
pdal:

pdal:
pdal:

pdal:
pdal:
pdal::
pdal:
pdal:
pdal:

pdal:

:MetadataNode::description (C++

function), 490

:MetadataNode::empty (C++ function),

491

:MetadataNode::find (C++ function), 491
:MetadataNode::findChild (C++

function), 491

:MetadataNode::findChildren (C++

function), 491

:MetadataNode::hasChildren (C++

function), 490
MetadataNode::jsonValue (C++
function), 490

:MetadataNode::kind (C++ function),

490

:MetadataNode::MetadataNode (C++

function), 489

:MetadataNode::name (C++ function),

490

:MetadataNode::operator

(C++ function), 491

pdal:
pdal:
pdal:
pdal::
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal::

pdal:

:Options:
:Options:
:Options:

:Options:
:Options::
:Options:
:Options:

:MetadataNode::operator bool (C++

function), 490

:MetadataNode::type (C++ function),

490

:MetadataNode::valid (C++ function),

491
MetadataNode::value (C++ function),
490

:Options (C++ class), 491
:Options::add (C++ function), 491
:Options::addConditional (C++

function), 491

:fromFile (C++ function), 492

:getKeys (C++ function), 492

:getOptions (C++ function),

492

:getValues (C++ function), 492

Options (C++ function), 491

:remove (C++ function), 491

:replace (C++ function), 491,
492

Options::toCommandLine (C++
function), 492

:Options::toMetadata (C++ function),

pdal:
pdal:

pdal:
pdal:

pdal:
pdal:

pdal:
pdal:

pdal:
pdal:

pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal::
pdal::
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:

pdal:

:PointView:

:PointView:

:PointView:

:PointView:

:PointView:

:PointView:
:PointView:
:PointView:
:PointView:
:PointView:

491

:PointTable (C++ class), 492
:PointTable::~PointTable (C++ function),

492

:PointTable::PointTable (C++ function),

492

:PointTable::supportsView (C++

function), 492

:PointView (C++ class), 492
:PointView::~PointView (C++ function),

493

:PointView::append (C++ function), 493
:PointView::appendPoint (C++ function),

493

:PointView::begin (C++ function), 493
:PointView::build2dIndex (C++

function), 495

:PointView::build3dIndex (C++

function), 495

:PointView::calculateBounds (C++

function), 493, 494

:PointView::clearTemps (C++ function),

495

:compare (C++ function),

493

:createMesh (C++ function),

495

:dimName (C++ function),
494

PointView:

PointView:

:dims (C++ function), 494
:dimSize (C++ function), 494
:dimType (C++ function),
494

:dimTypes (C++ function),
494

:dump (C++ function), 494
:empty (C++ function), 493
:end (C++ function), 493
:getField (C++ function), 493
:getFieldAs (C++ function),
493

:PointView::getOrAddPoint (C++

function), 495

:PointView::getPackedPoint (C++

function), 494

544

Index

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

pdal:
pdal:

pdal:
pdal:
pdal:

pdal:
pdal:

pdal:
pdal:

pdal::
pdal::

pdal:

pdal:
pdal:

pdal:
pdal:

pdal:
pdal:

pdal:
pdal:

pdal:
pdal:
pdal:
pdal:
pdal:

pdal:
pdal:

pdal:
pdal:

:PointView:
:PointView:

:PointView:
:PointView:

:PointView:

:PointView::
:PointView::

:PointView::getPoint (C++ function), 495
:PointView::getRawField (C++

function), 493

:PointView::hasDim (C++ function), 494
:PointView::id (C++ function), 493
:PointView::invalidateProducts (C++

function), 495

:layout (C++ function), 494

:makeNew (C++ function),

493

:mesh (C++ function), 495

:operator= (C++ function),
493

PointView:

PointView:
494

:point (C++ function), 493
:pointSize (C++ function),

:PointView (C++ function),
493

setField (C++ function), 493
setPackedPoint (C++
function), 494

:PointView::size (C++ function), 493
:PointView::spatialReference (C++

function), 494

:PointView::table (C++ function), 494
:PointView::toMetadata (C++ function),

495

:ProgramArgs (C++ class), 496
:ProgramArgs::add (C++ function), 496,

497

:ProgramArgs::addSynonym (C++

function), 498

:ProgramArgs::commandLine (C++

function), 498

:ProgramArgs::dump (C++ function),

499

:ProgramArgs::dump2 (C++ function),

499

:ProgramArgs::dump3 (C++ function),

499

:ProgramArgs::parse (C++ function), 498
:ProgramArgs::parseSimple (C++

function), 498

:ProgramArgs::reset (C++ function), 498
:ProgramArgs::set (C++ function), 496

pdal:
pdal::
pdal::
pdal::
pdal:

pdal::
pdal::
pdal::

pdal::
pdal::
pdal::
pdal::

pdal::
pdal::
pdal::
pdal::

pdal::

pdal::
pdal::
pdal::

pdal::
pdal::
pdal::
pdal::
pdal::

pdal::

pdal::
pdal::
pdal::
pdal::
pdal::
pdal::
pdal::

pdal::

pdal::

:Reader (C++ class), 499

Stage (C++ class), 500
Stage::~Stage (C++ function), 500
Stage::addAllArgs (C++ function), 502

:Stage::addConditionalOptions (C++

function), 502
Stage::addOptions (C++ function), 502
Stage::execute (C++ function), 501
Stage::findNonstreamable (C++
function), 501
Stage::getInputs (C++ function), 504
Stage::getMetadata (C++ function), 504
Stage::getName (C++ function), 503
Stage::getSpatialReference (C++
function), 502
Stage::isDebug (C++ function), 503
Stage::log (C++ function), 503
Stage::parseName (C++ function), 504
Stage::parseTagName (C++ function),
504
Stage::pipelineStreamable (C++
function), 501
Stage::prepare (C++ function), 501
Stage::preview (C++ function), 501
Stage::removeOptions (C++ function),
503
Stage::
Stage::
Stage::
Stage::
Stage::
500
Stage::setSpatialReference (C++
function), 501
Stage::setTag (C++ function), 503
Stage::Stage (C++ function), 500
Stage::startLogging (C++ function), 503
Stage::stopLogging (C++ function), 503
Stage::tag (C++ function), 503
StageFactory (C++ class), 505
StageFactory::createStage (C++
function), 505
StageFactory::destroyStage (C++
function), 505
StageFactory::inferReaderDriver (C++

serialize (C++ function), 504
setlnput (C++ function), 500
setLog (C++ function), 503
setOptions (C++ function), 502
setProgressFd (C++ function),

Index

545

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

pdal::
pdal::
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal::
pdal::
pdal::

pdal:
pdal:

pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:

pdal:

:Utils:
:Utils:
Utils:

function), 506
StageFactory::inferWriterDriver (C++
function), 506
StageFactory::StageFactory (C++
function), 505

:Utils (C++ type), 506
:Utils::BacktraceEntry (C++ class), 525
:Utils::BacktraceEntry::addr (C++

member), 525

:Utils::BacktraceEntry::BacktraceEntry

(C++ function), 525

:Utils::BacktraceEntry::libname (C++

member), 525

:Utils::BacktraceEntry::offset (C++

member), 525

:Utils::BacktraceEntry::symname (C++

member), 525

:Utils::backtraceImpl (C++ function),

509

:Utils::base64_decode (C++ function),

514

:Utils::base64_encode (C++ function),

513
:cksum (C++ function), 511
:closeProgress (C++ function), 508
:contains (C++ function), 508
:demangle (C++ function), 516
Utils::dirSeparator (C++ member), 525
Utils::dynamicLibExtension (C++
member), 525

Utils:

:Utils::eatcharacter (C++ function), 513
:Utils::eatwhitespace (C++ function),

512

:Utils::endsWith (C++ function), 511
:Utils::escapeJSON (C++ function), 515
:Utils::escapeNonprinting (C++

function), 516

:Utils::extractDim (C++ function), 508
:Utils::fromString (C++ function), 523
:Utils::fromString<char> (C++ function),

523

:Utils::fromString<double> (C++

function), 524

:Utils::fromString<Eigen::MatrixXd>

(C++ function), 506

pdal::
pdal::
pdal::
pdal::

pdal:
pdal:
pdal::
pdal::
pdal::
pdal::
pdal:

pdal:
pdal:
pdal:

pdal:
pdal:

pdal:
pdal:
pdal::
pdal::
pdal::
pdal::

pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal::

pdal::
pdal::

:Utils:
:Utils:

:Utils:

:Utils:
:Utils:

:Utils:
:Utils:
:Utils:
:Utils:

Utils::fromString<EptBounds> (C++
function), 525
Utils::fromString<signed char> (C++
function), 524
Utils::fromString<SrsBounds> (C++
function), 508
Utils::fromString<unsigned char> (C++
function), 524
:getenv (C++ function), 512
:hexDump (C++ function), 516
:iequals (C++ function), 511
:inRange (C++ function), 520
:insertDim (C++ function), 508
:normal (C++ function), 510
:normalizeLongitude (C++
function), 516

Utils:
Utils:
Utils:
Utils:

:Utils::numericCast (C++ function), 520
:Utils::openProgress (C++ function), 508
:Utils::pathListSeparator (C++ member),

525

:Utils::portable_pclose (C++ function),

514

:Utils::portable_popen (C++ function),

514
:printError (C++ function), 508
:random (C++ function), 510
:random_seed (C++ function), 509
:redirect (C++ function), 519
Utils::RedirectStream (C++ class), 525
Utils::RedirectStream::m_buf (C++
member), 526

Utils:
Utils:

:Utils::RedirectStream::m_null (C++

member), 526

:Utils::RedirectStream::m_out (C++

member), 526

:Utils::RedirectStream::RedirectStream

(C++ function), 525

:remove (C++ function), 509

:remove_if (C++ function), 509

:replaceAll (C++ function), 514

:restore (C++ function), 519

Utils::run_shell_command (C++
function), 514

Utils::screenWidth (C++ function), 516

Utils::setenv (C++ function), 512

546

Index

PDAL: Point cloud Data Abstraction Library, Release 2.1.0

pdal::

pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal::
pdal::
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal:
pdal::

Utils::simpleWordexp (C++ function),
518

:Utils::sround (C++ function), 510
:Utils::startsWith (C++ function), 511
:Utils::toDouble (C++ function), 508
:Utils::tolower (C++ function), 511
:Utils::toMetadata (C++ function), 508
:Utils::toNative (C++ function), 524
:Utils::toString (C++ function), 521-523
:Utils::toupper (C++ function), 511

Utils::trim (C++ function), 513
Utils::trimLeading (C++ function), 512

:Utils::trimTrailing (C++ function), 513
:Utils::typeidName (C++ function), 519
:Utils::uniform (C++ function), 510
:Utils::unsetenv (C++ function), 512
:Utils::wordWrap (C++ function), 515
:Utils::wordWrap2 (C++ function), 515
:Utils::writeProgress (C++ function), 508

Writer (C++ class), 526

pip, 259

poisson, 343

Potree, 319

project, 385

pronounce, 532

Python, 11, 257-259, 379

Q

QGIS, 321
query, 313
Quickstart, 17

R

range

filter, 336

Raster, 330
rasterization, 365
References, 536
Reprojection, 316

RGB,

330

RIEGL, 379

S

sample, 343

Scala,

261, 264, 265

search, 313

SOCS, 304

software installation, 308
Source, 259

spatial reference system, 310
Stage, 500

Start Here, 309

T

thinning, 343

U

Utils, 506
UTM, 316, 379

Vv

Vector, 324
voxel sampling, 343

W

web services, 319
WGS84, 316, 379

Index

547

	News
	03-21-2020

	About
	About

	Download
	Download

	Quickstart
	Quickstart

	Applications
	Applications

	Community
	Community

	Drivers
	Pipeline
	Readers
	Writers
	Filters

	Dimensions
	Dimensions

	Types
	Types

	Python
	Python

	Java
	Java

	Tutorials
	Tutorials

	Workshop
	Point Cloud Processing and Analysis with PDAL

	Development
	Development
	Project
	API
	FAQ
	License
	References

	Indices and tables
	Bibliography
	Index

